968 resultados para Decapeptide Agonists
Resumo:
Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl) benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenyl-ethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phen-cyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl) phenyl) methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl) ethynyl) nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.
Resumo:
Phenotypic studies of mice lacking metabotropic glutamate receptor subtype 7 (mGluR7) suggest that antagonists of this receptor may be promising for the treatment of central nervous system disorders such as anxiety and depression. Suzuki et al. (J Pharmacol Exp Ther 323: 147-156, 2007) recently reported the in vitro characterization of a novel mGluR7 antagonist called 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), which noncompetitively inhibited the activity of orthosteric and allosteric agonists at mGluR7. We describe that MMPIP acts as a noncompetitive antagonist in calcium mobilization assays in cells coexpressing mGluR7 and the promiscuous G protein G alpha(15). Assessment of the activity of a small library of MMPIP-derived compounds using this assay reveals that, despite similar potencies, compounds exhibit differences in negative co-operativity for agonist-mediated calcium mobilization. Examination of the inhibitory activity of MMPIP and analogs using endogenous G(i/o)-coupled assay readouts indicates that the pharmacology of these ligands seems to be context-dependent, and MMPIP exhibits differences in negative cooperativity in certain cellular backgrounds. Electrophysiological studies reveal that, in contrast to the orthosteric antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxyclycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), MMPIP is unable to block agonist-mediated responses at the Schaffer collateral-CA1 synapse, a location at which neurotransmission has been shown to be modulated by mGluR7 activity. Thus, MMPIP and related compounds differentially inhibit coupling of mGluR7 in different cellular backgrounds and may not antagonize the coupling of this receptor to native G(i/o) signaling pathways in all cellular contexts. The pharmacology of this compound represents a striking example of the potential for context-dependent blockade of receptor responses by negative allosteric modulators.
Resumo:
Data regarding the total number of anti-asthma drugs dispensed via community pharmacies within Northern Ireland from 1980 to 1997 were collected and analysed. The use of anti-asthma drugs within this population increased markedly over the study period from 19.84 DDDs/1000/day to 84.07 DDDs/1000/day. With the exception of the non-selective beta(2)-agonists, there has been an overall increasing trend in the utilization of all of the anti-asthma drugs during the study period. Most of the increase is attributable to the increase in prescribing of the selective beta(2)-agonists and the glucocorticoids, This increase in the utilization of anti-asthma drugs may be explained by an increasing prevalence of the condition, increased adherence to asthma management protocols or to the prescribing of more intensive drug therapies.
Resumo:
The aim of this article is to review the interplay between adenosine and mast cells in asthma. Adenosine is an endogenous nucleoside released from metabolically active cells and generated extracellularly via the degradation of released ATP. It is a potent biological mediator that modulates the activity of numerous cell types including platelets, neutrophils and mast cells via action at specific adenosine receptors (A(1), A(2a), A(2b), A(3)). These receptors are expressed on mast cells but the exact pattern of receptor subtype expression depends on the source of the mast cells. Adenosine is also a potent bronchoconstricting agent and is suggested to contribute to the pathophysiology of asthma. Evidence is provided to suggest that the nucleoside exerts its influence on the asthmatic condition through its ability to modulate the release of mast cell derived mediators. However, the mechanism of adenosine/mast cell interaction which contributes to asthma remains unclear. Progress in the area has been hampered by the heterogeneity of mast cell responses and a lack of highly specific receptor agonists and antagonists. The expression of different adenosine receptor subtypes on mast cells is described. The final section of the review presents data to suggest that BAL mast cells may provide an accurate and relevant model for future investigations and together with the development of superior pharmacological tools, may aid the realisation of the therapeutic potential of adenosine/mast cell interactions in asthma. In conclusion, the role of adenosine in asthma is clearly complex. A better understanding of the contribution of adenosine to the asthmatic condition may lead to novel therapeutic approaches in the treatment of the disease.
Resumo:
Using an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy, whole-mount preparations of three genera of marine trematode larvae, Cryntocotyle lingua, Cercaria emasculans and Himasthla leptosoma, were screened for 5-hydroxytryptamine (5-HT) and selected neuropeptide immunoreactivities (IRs). IRs for pancreatic polypeptide (PP), peptide YY (PYY) and FMRFamide were found in the central nervous systems of the three species of cercariae, immunostaining the paired ganglia and central commissure and the longitudinal nerve cords, with slight differences in both distribution and intensity of IRs being observed for the different antisera used. PP, PYY and FMRFamide IRs were evident in both central and peripheral components of the nervous system in the rediae of C. lingua. 5-HT IR was confined to the peripheral nervous systems of the cercariae of C. emasculans and the rediae of C. lingua, appearing in the form of a network of immunoreactive fibres and associated large cell bodies. A moderate substance P IR was observed in the nervous system of the cercariae of C. lingua. The patterns of immunostaining described were compared with those obtained using antiserum directed to the C-terminal decapeptide amide of neuropeptide F (NPF), a native parasitic peptide from the cestode Moniezia expansa. Results demonstrated that serotoninergic and peptidergic components were present in the nervous systems of all of the trematode larvae studied and that some, if not all, of the IR for PP. PYY and FMRFamide was due to the presence of a trematode NPF homologue.
Resumo:
The distribution pattern and subcellular localisation of neuropeptide F (NPF) immunoreactivity (IR) in the tetrathyridium stage of Mesocestoides corti were investigated by whole-mount immunocytochemistry in conjunction with confocal scanning laser microscopy (CSLM) and by immunoelectron microscopy using immunogold labeling. Using an antiserum directed to the C-terminal decapeptide amide (residues 30-39) of synthetic NPF (Moniezia expansa), CSLM revealed NPF-IR throughout the central and peripheral nervous systems of parental and dividing tetrathyridia. Ultrastructurally, gold labeling of NPF-IR was confined to the contents of the smaller of the two sizes of electron-dense neuronal vesicle identified.
Resumo:
Immunocytochemical techniques used in conjunction with confocal scanning laser microscopy (CSLM) and electron microscopy have been used to demonstrate, for the first time, the distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF) in the cestode, Moniezia expansa. Antisera were raised to intact NPF(1-39) and to the C-terminal decapeptide of NPF(30-39). These antisera were characterized and validated for use in both immunocytochemistry and radioimmunoassay (RIA). NPF immunoreactivity (IR) was detected using both antisera throughout all of the major components of the central and peripheral nervous systems of the worm. The pattern of NPF-IR was found to mirror the IR obtained using a C-terminally directed pancreatic polypeptide (PP) antiserum and FMRFamide antisera; blocking studies using these antisera revealed that FMRFamide and PP antisera cross-react with NPF(M. expansa). RIA of acid-alcohol extracts of the worm measured 114 ng/g using the C-terminal NPF antiserum and 56 ng/g using the whole-molecule-directed antiserum. While the C-terminally-directed NPF antiserum cross-reacts with NPF-related peptides from other invertebrates, the whole-molecule-directed NPF antiserum is specific for NPF(M. expansa). The C-terminal NPF antiserum has potential for use in the identification and purification of NPF analogues from other platyhelminth parasites.
Resumo:
The localisation and distribution of neuropeptide F (NPF)-immunoreactivity (IR) in the monogenean fish-gill parasite, Diclidophora merlangi, have been investigated by whole-mount immunocytochemistry interfaced with confocal scanning laser microscopy and, at the ultrastructural level, by indirect immunogold labeling. Using antisera directed to intact synthetic NPF (Moniezia expansa, residues 1-39) or to the C-terminal decapeptide (residues 30-39) of synthetic NPF (M. expansa), immunostaining was found throughout the central (CNS) and peripheral nervous systems (PNS), including the innervation of the reproductive system. Immunoreactivity was found to be more intense using the antiserum to the C-terminal decapeptide fragment of NPF. At the subcellular level, gold labeling of NPF-IR was found exclusively over the contents of dense-cored vesicles that occupied nerve axons of both the CNS and the PNS. The distribution pattern of immunostaining for NPF mirrored exactly that previously documented for the vertebrate pancreatic polypeptide (PP) family of peptides and for FMRFamide. This finding and the results of preabsorption experiments strongly suggest that NPF is the predominant native neuropeptide in D. merlangi and that it accounts for most of the immunostaining previously obtained with PP and FMRFamide antisera.
Resumo:
From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.
Resumo:
Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-alpha-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu(173) or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB.
Resumo:
Homology modeling was used to build 3D models of the N-methyl-D-aspartate (NMDA) receptor glycine binding site on the basis of an X-ray structure of the water-soluble AMPA-sensitive receptor. The docking of agonists and antagonists to these models was used to reveal binding modes of ligands and to explain known structure-activity relationships. Two types of quantitative models, 3D-QSAR/CoMFA and a regression model based on docking energies, were built for antagonists (derivatives of 4-hydroxy-2-quinolone, quinoxaline-2,3-dione, and related compounds). The CoMFA steric and electrostatic maps were superimposed on the homology-based model, and a close correspondence was marked. The derived computational models have permitted the evaluation of the structural features crucial for high glycine binding site affinity and are important for the design of new ligands.
Resumo:
We present new homology-based models of the glutamate binding site (in closed and open forms) of the NMDA receptor NR2B subunit derived from X-ray structures of the water soluble AMPA sensitive glutamate receptor. The models were used for revealing binding modes of agonists and competitive antagonists, as well as for rationalizing known experimental facts concerning structure-activity relationships: (i) the switching between the agonist and the antagonist modes of action upon lengthening the chain between the distal acidic group and the amino acid moiety, (ii) the preference for the methyl group attached to the a-amino group of ligands, (iii) the preference for the D-configuration of agonists and antagonists, and (iv) the existence of "superacidic" agonists.
Resumo:
Tachykinins were purified from extracts of gastrointestinal tissues of the urodele, Amphiuma tridacrylum (three-toed amphiuma), and the elasmobranch Sphyrna lewini (hammerhead shark), and from the brain of the agnathan Lampetra fluviatilis (river lamprey). The amphiuma substance P (SP) (DNPSVGQFYGLM-NH2) contains 12 amino residues compared with 11 for mammalian SP and lacks the Arg/Lys-Pro-Xaa-Pro motif that is characteristic of NK, receptor-selective agonists. Lampetra SP (RKPHPKEFVGLM-NH2) is identical to SP from the sea lamprey and the shark SP-related peptide (AKFDKFYGLM-NH2) is identical to dogfish scyliorhinin L. Amphiuma neurokinin A (NKA) (HKDAFIGLM-NH2) and lamprey NKA (HFDEFVGLM-NH2) contain 9 amino acid residues compared with 10 for mammalian NKA. The shark NKA-related peptide (ASGPTQAGIV(10)GRKRQKGEMF(20)VGLM-NH2) shows limited structural similarity to mammalian neuropeptide gamma and the teleost tachykinin, carassin but contains 24 rather than 21 amino acid residues. The data show that the primary structures of the tachykinins have been very poorly conserved during vertebrate evolution and that pressure has acted only to maintain the functionally important sequence -Phe-Xaa-Gly- Leu-Met-NH2 at the COOH-termini of the peptides.
Resumo:
Background: Asthma is a leading, preventable cause of morbidity, mortality and cost. A disproportionate amount of the cost is generated by the 5-10%of patients with difficult-to-control asthma, who are prescribed treatment at step 4/5 of the Global Initiative for Asthma (GINA) guidelines. We have previously demonstrated a high prevalence of nonadherence to inhaled combination therapy (i.e. long-acting ß -adrenoceptor agonist [ß - agonist] and corticosteroid) in this population. The aim of this study was to examine the costs of healthcare utilization in a nonadherent group of patients with difficult-to-control asthma compared with adherent subjects. We also wished to examine potential savings if nonadherence to inhaled combination therapy could be addressed. All costs were measured from the perspective of a publicly funded health service Methods: Adherence was determined through examination of patient prescription refill behaviour and validated with a medical concordance interview. Data on healthcare use were collected from a patient survey and hospital records that included prescribed medicines, hospital admissions, intensive care unit (ICU) admissions and other unscheduled healthcare visits associated with asthma care. Activity was monetized using standard UK references and between-group comparisons based on a series of univariate and multivariate regression analyses. Results: Cost differences were identified for inhaled combination therapy, nebulizer, short acting b2-agonists and hospital costs excluding and including ICU admissions between adherent and nonadherent subjects. Compared with a group who have refractory asthma and who are adherent with medication, additional healthcare costs in nonadherent subjects are offset by the reduction in costs associated with reduced medication utilization. However, if nonadherence can be successfully targeted and hospital admissions avoided in this population, there is a potential $475 ($843-$368) saving per patient, per annum. Conclusion: Nonadherence is an important cause of difficult-to-control asthma. A uniform cost for subjects with difficult-to-control disease can be applied to economic analyses, independent of adherence, as increased healthcare utilization costs are offset by the reduced medication cost due to poor adherence. However, there are substantial potential savings in subjects with difficult-to-control asthma, who are nonadherent to inhaled combination therapy, if cost effective strategies for nonadherence are developed. © 2011 Adis Data Information BV. All rights reserved.
Resumo:
We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.