844 resultados para Data mining and knowledge discovery
Resumo:
Absolute quantitation of clinical (1)H-MR spectra is virtually always incomplete for single subjects because the separate determination of spectrum, baseline, and transverse and longitudinal relaxation times in single subjects is prohibitively long. Integrated Processing and Acquisition of Data (IPAD) based on a combined 2-dimensional experimental and fitting strategy is suggested to substantially improve the information content from a given measurement time. A series of localized saturation-recovery spectra was recorded and combined with 2-dimensional prior-knowledge fitting to simultaneously determine metabolite T(1) (from analysis of the saturation-recovery time course), metabolite T(2) (from lineshape analysis based on metabolite and water peak shapes), macromolecular baseline (based on T(1) differences and analysis of the saturation-recovery time course), and metabolite concentrations (using prior knowledge fitting and conventional procedures of absolute standardization). The procedure was tested on metabolite solutions and applied in 25 subjects (15-78 years old). Metabolite content was comparable to previously found values. Interindividual variation was larger than intraindividual variation in repeated spectra for metabolite content as well as for some relaxation times. Relaxation times were different for various metabolite groups. Parts of the interindividual variation could be explained by significant age dependence of relaxation times.
Resumo:
BACKGROUND The WHO-surgical checklist is strongly recommended as a highly effective yet economically simple intervention to improve patient safety. Its use and potentially influential factors were investigated as little data exist on the current situation in Switzerland. METHODS A cross-sectional online survey with members (N = 1378) of three Swiss professional associations of invasive health care professionals was conducted in German, French, and Italian. The survey assessed use of, knowledge of and satisfaction with the WHO-surgical checklist. T-Tests and ANOVA were conducted to test for differences between professional groups. Bivariate correlations were computed to test for associations between measures of knowledge and satisfaction. RESULTS 1090 (79.1%) reported the use of a surgical checklist. 346 (25.1%) use the WHO-checklist, 532 (38.6%) use the Swiss Patient Safety Foundation recommendations to avoid Wrong Site Surgery, and 212 (15.7%) reported the use of other checklists. Satisfaction with checklist use was generally high (doctors: 71.9% satisfied, nurses: 60.8% satisfied) and knowledge was moderate depending on the use of the WHO-checklist. No association between measures of subjective and objective knowledge was found. CONCLUSIONS Implementation of a surgical checklist remains an important task for health care institutions in Switzerland. Although checklist use is present in Switzerland on a regular basis, a substantial group of health care personnel still do not use a checklist as a routine. Influential factors and the associations among themselves need to be addressed in future studies in more detail.
Resumo:
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Resumo:
Despite the recent decline in adolescent pregnancy rates, adolescent pregnancy continues to be a significant public health issue in the United States. The United States consistently reports the highest rate of adolescent pregnancy among developed countries. Adolescent mothers are more likely to have multiple pregnancies, to access welfare and other social services, and to be unmarried. Teen mothers are less likely to complete high school, enter college, and typically command much less earning power throughout their lifetime as compared to women who delay childbirth until later. Moreover, the United States spends approximately $9.1 billion annually on teen pregnancies. ^ Additionally disconcerting is recent data which demonstrates that the decline in teen pregnancy rates is leveling off and that the rate of adolescent pregnancy has increased for the first time since 1993. Contraceptive use is a key component to the prevention of adolescent pregnancy. Contraceptive nonuse and failure result in unintended pregnancies among adolescents. This review sought to assess the levels of knowledge and attitudes toward contraception among adolescent females.^ Levels of knowledge of contraception among adolescents are tolerable; however, there is substantial room for improvement. Misperceptions about the side effects and mechanisms of action of contraception are pervasive among this population. Adolescents who have low levels of knowledge regarding contraception tend to discontinue usage or use inconsistently. Attitudes toward contraception are greatly influenced by levels of knowledge. As a result, adolescents tend to develop more positive attitudes as misperceptions are abated. Moreover, clear disparities persist among adolescents with minority and young adolescents being at increased risk of pregnancy, poor contraceptive use, and insufficient knowledge about contraception.^ Understanding the level of knowledge of and attitudes toward contraceptives among adolescents is essential to the development of effective pregnancy prevention programs. In order to effectively reduce adolescent pregnancy, prevention initiatives must target the vulnerable populations and incorporate the necessary cultural components.^
Resumo:
Scholars agree that governance of the public environment entails cooperation between science, policy and society. This requires the active role of public managers as catalysts of knowledge co-production, addressing participatory arenas in relation to knowledge integration and social learning. This paper deals with the question of whether public managers acknowledge and take on this task. A survey accessing Directors of Environmental Offices (EOs) of 64 municipalities was carried out in parallel for two regions - Tuscany (Italy) and Porto Alegre Metropolitan Region (Brazil). The survey data were analysed using the multiple correspondence method. Results showed that, regarding policy practices, EOs do not play the role of knowledge co-production catalysts, since when making environmental decisions they only use technical knowledge. We conclude that there is a gap between theory and practice, and identify some factors that may hinder local environmental managers in acting as catalyst of knowledge co-production, raising a further question for future research.
Resumo:
We present the data structures and algorithms used in the approach for building domain ontologies from folksonomies and linked data. In this approach we extracts domain terms from folksonomies and enrich them with semantic information from the Linked Open Data cloud. As a result, we obtain a domain ontology that combines the emergent knowledge of social tagging systems with formal knowledge from Ontologies.
Resumo:
In parallel to the effort of creating Open Linked Data for the World Wide Web there is a number of projects aimed for developing the same technologies but in the context of their usage in closed environments such as private enterprises. In the paper, we present results of research on interlinking structured data for use in Idea Management Systems - a still rare breed of knowledge management systems dedicated to innovation management. In our study, we show the process of extending an ontology that initially covers only the Idea Management System structure towards the concept of linking with distributed enterprise data and public data using Semantic Web technologies. Furthermore we point out how the established links can help to solve the key problems of contemporary Idea Management Systems
Resumo:
Ubiquitous computing software needs to be autonomous so that essential decisions such as how to configure its particular execution are self-determined. Moreover, data mining serves an important role for ubiquitous computing by providing intelligence to several types of ubiquitous computing applications. Thus, automating ubiquitous data mining is also crucial. We focus on the problem of automatically configuring the execution of a ubiquitous data mining algorithm. In our solution, we generate configuration decisions in a resource aware and context aware manner since the algorithm executes in an environment in which the context often changes and computing resources are often severely limited. We propose to analyze the execution behavior of the data mining algorithm by mining its past executions. By doing so, we discover the effects of resource and context states as well as parameter settings on the data mining quality. We argue that a classification model is appropriate for predicting the behavior of an algorithm?s execution and we concentrate on decision tree classifier. We also define taxonomy on data mining quality so that tradeoff between prediction accuracy and classification specificity of each behavior model that classifies by a different abstraction of quality, is scored for model selection. Behavior model constituents and class label transformations are formally defined and experimental validation of the proposed approach is also performed.
Resumo:
Diabetes is the most common disease nowadays in all populations and in all age groups. diabetes contributing to heart disease, increases the risks of developing kidney disease, blindness, nerve damage, and blood vessel damage. Diabetes disease diagnosis via proper interpretation of the diabetes data is an important classification problem. Different techniques of artificial intelligence has been applied to diabetes problem. The purpose of this study is apply the artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining (DM) technique for the diabetes disease diagnosis. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with decision tree (DT), Bayesian classifier (BC) and other algorithms, recently proposed by other researchers, that were applied to the same database. The robustness of the algorithms are examined using classification accuracy, analysis of sensitivity and specificity, confusion matrix. The results obtained by AMMLP are superior to obtained by DT and BC.
Resumo:
In data assimilation, one prepares the grid data as the best possible estimate of the true initial state of a considered system by merging various measurements irregularly distributed in space and time, with a prior knowledge of the state given by a numerical model. Because it may improve forecasting or modeling and increase physical understanding of considered systems, data assimilation now plays a very important role in studies of atmospheric and oceanic problems. Here, three examples are presented to illustrate the use of new types of observations and the ability of improving forecasting or modeling.
Resumo:
En esta memoria se presenta el diseño y desarrollo de una aplicación en la nube destinada a la compartición de objetos y servicios. El desarrollo de esta aplicación surge dentro del proyecto de I+D+i, SITAC: Social Internet of Things – Apps by and for the Crowd ITEA 2 11020, que trata de crear una arquitectura integradora y un “ecosistema” que incluya plataformas, herramientas y metodologías para facilitar la conexión y cooperación de entidades de distinto tipo conectadas a la red bien sean sistemas, máquinas, dispositivos o personas con dispositivos móviles personales como tabletas o teléfonos móviles. El proyecto innovará mediante la utilización de un modelo inspirado en las redes sociales para facilitar y unificar las interacciones tanto entre personas como entre personas y dispositivos. En este contexto surge la necesidad de desarrollar una aplicación destinada a la compartición de recursos en la nube que pueden ser tanto lógicos como físicos, y que esté orientada al big data. Ésta será la aplicación presentada en este trabajo, el “Resource Sharing Center”, que ofrece un servicio web para el intercambio y compartición de contenido, y un motor de recomendaciones basado en las preferencias de los usuarios. Con este objetivo, se han usado tecnologías de despliegue en la nube, como Elastic Beanstalk (el PaaS de Amazon Web Services), S3 (el sistema de almacenamiento de Amazon Web Services), SimpleDB (base de datos NoSQL) y HTML5 con JavaScript y Twitter Bootstrap para el desarrollo del front-end, siendo Python y Node.js las tecnologías usadas en el back end, y habiendo contribuido a la mejora de herramientas de clustering sobre big data. Por último, y de cara a realizar el estudio sobre las pruebas de carga de la aplicación se ha usado la herramienta ApacheJMeter.
Resumo:
Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.
Resumo:
The exponential increase of subjective, user-generated content since the birth of the Social Web, has led to the necessity of developing automatic text processing systems able to extract, process and present relevant knowledge. In this paper, we tackle the Opinion Retrieval, Mining and Summarization task, by proposing a unified framework, composed of three crucial components (information retrieval, opinion mining and text summarization) that allow the retrieval, classification and summarization of subjective information. An extensive analysis is conducted, where different configurations of the framework are suggested and analyzed, in order to determine which is the best one, and under which conditions. The evaluation carried out and the results obtained show the appropriateness of the individual components, as well as the framework as a whole. By achieving an improvement over 10% compared to the state-of-the-art approaches in the context of blogs, we can conclude that subjective text can be efficiently dealt with by means of our proposed framework.
Resumo:
This paper proposes a novel application of fuzzy logic to web data mining for two basic problems of a website: popularity and satisfaction. Popularity means that people will visit the website while satisfaction refers to the usefulness of the site. We will illustrate that the popularity of a website is a fuzzy logic problem. It is an important characteristic of a website in order to survive in Internet commerce. The satisfaction of a website is also a fuzzy logic problem that represents the degree of success in the application of information technology to the business. We propose a framework of fuzzy logic for the representation of these two problems based on web data mining techniques to fuzzify the attributes of a website.