950 resultados para DNA-METHYLATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’acido perfluorottanoico (PFOA) e l’acido perfluoronanoico (PFNA) sono composti perfluorurati (PFCs) comunemente utilizzati nell’industria, negli ultimi 60 anni, per diverse applicazioni. A causa della loro resistenza alla degradazione, questi composti sono in grado di accumularsi nell’ambiente e negli organismi viventi, da cui possono essere assunti in particolare attraverso la dieta. Le esistenti evidenze sugli effetti dell’esposizione negli animali, tra cui la potenziale cancerogenicità, hanno accresciuto l’interesse sui possibili rischi per la salute nell’uomo. Recenti studi sull’uomo indicano che i PFC sono presenti nel siero, con livelli molto alti soprattutto nei lavoratori cronicamente esposti, e sono associati positivamente al cancro al seno e alla prostata. Inoltre, sono state riportate proprietà estrogen-like e variazioni nei livelli di metilazione sui promotori di alcuni geni. L’esposizione in utero è stata associata positivamente a ipometilazione globale del DNA nel siero cordonale. L’obiettivo di questo studio è stato quello di indagare gli effetti dell’esposizione a questi perfluorurati su linee cellulari tumorali e primarie umane (MOLM-13, RPMI, HEPG2, MCF7,WBC, HMEC e MCF12A), appartenenti a diversi tessuti target, utilizzando un ampio range di concentrazioni (3.12 nM - 500 μM). In particolare, si è valutato: la vitalità, il ciclo cellulare, l’espressione genica, la metilazione globale del DNA e la metilazione gene specifica. Dai risultati è emerso come entrambi i perfluorurati abbiano effetti biologici: PFOA presenta un effetto prevalente citostatico, PFNA prevalentemente citotossico. L’effetto è, però, prevalente sulle linee cellulari primarie di epitelio mammario (HMEC, MCF12A), anche a concentrazioni riscontrate in lavoratori cronicamente esposti (≥31,25 µM). Dall’analisi su queste cellule primarie, non risultano variazioni significative della metilazione globale del DNA alle concentrazioni di 15,6 e 31,25 µM. Emergono invece variazioni sui geni marcatori del cancro al seno, del ciclo cellulare, dell’apoptosi, del pathway di PPAR-α e degli estrogeni, ad una concentrazione di 31,25 µM di entrambi i PFCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Persons affected by Down Syndrome show a heterogeneous phenotype that includes developmental defects and cognitive and haematological disorders. Premature accelerated aging and the consequent development of age associated diseases like Alzheimer Disease (AD) seem to be the cause of higher mortality late in life of DS persons. Down Syndrome is caused by the complete or partial trisomy of chromosome 21, but it is not clear if the molecular alterations of the disease are triggered by the specific functions of a limited number of genes on chromosome 21 or by the disruption of genetic homeostasis due the presence of a trisomic chromosome. As epigenomic studies can help to shed light on this issue, here we used the Infinium HumanMethilation450 BeadChip to analyse blood DNA methylation patterns of 29 persons affected by Down syndrome (DSP), using their healthy siblings (DSS) and mothers (DSM) as controls. In this way we obtained a family-based model that allowed us to monitor possible confounding effects on DNA methylation patterns deriving from genetic and environmental factors. We showed that defects in DNA methylation map in genes involved in developmental, neurological and haematological pathways. These genes are enriched on chromosome 21 but localize also in the rest of the genome, suggesting that the trisomy of specific genes on chromosome 21 induces a cascade of events that engages many genes on other chromosomes and results in a global alteration of genomic function. We also analysed the methylation status of three target regions localized at the promoter (Ribo) and at the 5’ sequences of 18S and 28S regions of the rDNA, identifying differently methylated CpG sites. In conclusion, we identified an epigenetic signature of Down Syndrome in blood cells that sustains a link between developmental defects and disease phenotype, including segmental premature aging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il carcinoma squamoso orale (CSO) è spesso preceduto da lesioni definite potenzialmente maligne tra cui la leucoplachia e il lichen ma una diagnosi precoce avviene ancora oggi in meno della metà dei casi. Inoltre spesso un paziente trattato per CSO svilupperà secondi tumori. Scopo del lavoro di ricerca è stato: 1) Studiare, mediante metodica di next generation sequencing, lo stato di metilazione di un gruppo di geni a partire da prelievi brushing del cavo orale al fine di identificare CSO o lesioni ad alto rischio di trasformazione maligna. 2) Valurare la relazione esistente tra sovraespressione di p16INK4A e presenza di HPV in 35 pazienti affetti da lichen 3) Valutare la presenza di marker istopatologici predittivi di comparsa di seconde manifestazioni tumorali 4) valutare la relazione clonale tra tumore primitivo e metastasi linfonodale in 8 pazienti mediante 2 metodiche di clonalità differenti: l’analisi di mtDNA e delle mutazioni del gene TP53. I risultati hanno mostrato: 1) i geni ZAP70 e GP1BB hanno presentato un alterato stato di metilazione rispettivamente nel 100% e nel 90,9% di CSO e lesioni ad alto rischio, mentre non sono risultati metilati nei controlli sani; ipotizzando un ruolo come potenziali marcatori per la diagnosi precoce nel CSO. 2)Una sovraespressione di p16INK4A è risultata in 26/35 pazienti affetti da lichen ma HPV-DNA è stato identificato in soli 4 campioni. Nessuna relazione sembra essere tra sovraespressione di p16INK4A e virus HPV. 3)L’invasione perineurale è risultato un marker predittivo della comparsa di recidiva locale e metastasi linfonodale, mentre lo stato dei margini chirurgici si è rilevato un fattore predittivo per la comparsa di secondi tumori primitivi 4) Un totale accordo nei risultati c’è stato tra analisi di mtDNA e analisi di TP53 e le due metodiche hanno identificato la presenza di 4 metastasi linfonodali non clonalmente correlate al tumore primitivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epigenetic variability is a new mechanism for the study of human microevolution, because it creates both phenotypic diversity within an individual and within population. This mechanism constitutes an important reservoir for adaptation in response to new stimuli and recent studies have demonstrated that selective pressures shape not only the genetic code but also DNA methylation profiles. The aim of this thesis is the study of the role of DNA methylation changes in human adaptive processes, considering the Italian peninsula and macro-geographical areas. A whole-genome analysis of DNA methylation profile across the Italian penisula identified some genes whose methylation levels differ between individuals of different Italian districts (South, Centre and North of Italy). These genes are involved in nitrogen compound metabolism and genes involved in pathogens response. Considering individuals with different macro-geographical origins (individuals of Asians, European and African ancestry) more significant DMRs (differentially methylated regions) were identified and are located in genes involved in glucoronidation, in immune response as well as in cell comunication processes. A "profile" of each ancestry (African, Asian and European) was described. Moreover a deepen analysis of three candidate genes (KRTCAP3, MAD1L and BRSK2) in a cohort of individuals of different countries (Morocco, Nigeria, China and Philippines) living in Bologna, was performed in order to explore genetic and epigenetic diversity. Moreover this thesis have paved the way for the application of DNA methylation for the study of hystorical remains and in particular for the age-estimation of individuals starting from biological samples (such as teeth or blood). Noteworthy, a mathematical model that considered methylation values of DNA extracted from cementum and pulp of living individuals can estimate chronological age with high accuracy (median absolute difference between age estimated from DNA methylation and chronological age was 1.2 years).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nox4 is a member of the NADPH oxidase family, which represents a major source of reactive oxygen species (ROS) in the vascular wall. Nox4-mediated ROS production mainly depends on the expression levels of the enzyme. The aim of my study was to investigate the mechanisms of Nox4 transcription regulation by histone deacetylases (HDAC). Treatment of human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy926 cells with the pan-HDAC inhibitor scriptaid led to a marked decrease in Nox4 mRNA expression. A similar down-regulation of Nox4 mRNA expression was observed by siRNA-mediated knockdown of HDAC3. HDAC inhibition in endothelial cells was associated with enhanced histone acetylation, increased chromatin accessibility in the human Nox4 promoter region, with no significant changes in DNA methylation. In addition, the present study provided evidence that c-Jun played an important role in controlling Nox4 transcription. Knockdown of c-Jun with siRNA led to a down-regulation of Nox4 mRNA expression. In response to scriptaid treatment, the binding of c-Jun to the Nox4 promoter region was reduced despite the open chromatin structure. In parallel, the binding of RNA polymerase IIa to the Nox4 promoter was significantly inhibited as well, which may explain the reduction in Nox4 transcription. In conclusion, HDAC inhibition decreases Nox4 transcription in human endothelial cells by preventing the binding of transcription factor(s) and polymerase(s) to the Nox4 promoter, most likely because of a hyperacetylation-mediated steric inhibition. In addition, HDAC inhibition-induced Nox4 downregulation may also involves microRNA-mediated mRNA destabilization, because the effect of the scriptaid could be partially blocked by DICER1 knockdown or by transcription inhibition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seit der Geburt von Louise J. Brown (1978) als erstem künstlich erzeugtem Kind hat sich die Nachfrage nach assistierten Reproduktionstechniken (ART) stark erhöht. Der Anteil der nach In-vitro-Fertilisation (IVF) oder Intrazytoplasmatischer Spermieninjektion (ICSI) geborenen Kinder macht mittlerweile abhängig vom betrachteten Industrieland zwischen 1-4% an der Gesamtgeburtenzahl aus. In zahlreichen Studien korreliert eine erhöhte Prävalenz für seltene Imprinting-Erkrankungen, wie z.B. Beckwith-Wiedemann oder Angelman-Syndrom, mit der Geburt nach assistierten Reproduktionstechniken. Es ist bekannt, dass die medizinischen Interventionen zur Behandlung von Sub- und Infertilität in sehr sensitive Phasen der epigenetischen Reprogrammierung des Embryos und der Keimzellen eingreifen. In der vorliegenden Arbeit wurde untersucht, ob die ovarielle Stimulation einen Einfluss auf die epigenetische Integrität von geprägten Genen in murinen Präimplantationsembryonen hat. Die in diesem Zusammenhang entwickelte digitale Bisulfitpyrosequenzierung gewährleistet die Analyse der DNA-Methylierung auf Einzelallelebene durch eine adäquate Verdünnung der Probe im Vorfeld der PCR. Die ovarielle Induktion führte zu einem erhöhten Rate an Epimutationen des paternalen H19-Allels, sowie des maternalen Snrpn-Allels. Zudem konnte festgestellt werden, dass die Expression von drei potentiellen Reprogrammierungsgenen (Apex1, Polb, Mbd3) in Embryonen aus hormonell stimulierten Muttertieren dereguliert ist. Whole-Mount Immunfluoreszenzfärbungen für APEX1 korrelierten dessen differentielle Genexpression mit dem Proteinlevel. Anzeichen früher apoptotischer Vorgänge äußerten sich in Embryonen aus hormonell induzierten Muttertieren in der hohen Rate an Embryonen, die keines der drei Transkripte exprimierten oder weniger APEX1-positive Blastomeren aufwiesen.In einer weiteren Fragestellung wurde untersucht, ob die Kryokonservierung muriner Spermatozoen den epigenetischen Status geprägter Gene in den Keimzellen beeinflusst. Die Analyse von F1-Zweizellembryonen, die durch IVF mit den jeweiligen Spermatozoen eines Männchens generiert wurden, diente der Aufklärung möglicher paternaler Transmissionen. Insgesamt konnten keine signifikanten Auswirkungen der Kryokonservierung auf den epigenetischen Status in Spermatozoen und F1-Embryonen ermittelt werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approximately 3.6% of cancers worldwide derive from chronic alcohol drinking, including those of the upper aerodigestive tract, the liver, the colorectum and the breast. Although the mechanisms for alcohol-associated carcinogenesis are not completely understood, most recent research has focused on acetaldehyde, the first and most toxic ethanol metabolite, as a cancer-causing agent. Ethanol may also stimulate carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Alcohol-related carcinogenesis may interact with other factors such as smoking, diet and comorbidities, and depends on genetic susceptibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heritable variation in plant phenotypes, and thus potential for evolutionary change, can in principle not only be caused by variation in DNA sequence, but also by underlying epigenetic variation. However, the potential scope of such phenotypic effects and their evolutionary significance are largely unexplored. Here, we conducted a glasshouse experiment in which we tested the response of a large number of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana – lines that are nearly isogenic but highly variable at the level of DNA methylation – to drought and increased nutrient conditions. We found significant heritable variation among epiRILs both in the means of several ecologically important plant traits and in their plasticities to drought and nutrients. Significant selection gradients, that is, fitness correlations, of several mean traits and plasticities suggest that selection could act on this epigenetically based phenotypic variation. Our study provides evidence that variation in DNA methylation can cause substantial heritable variation of ecologically important plant traits, including root allocation, drought tolerance and nutrient plasticity, and that rapid evolution based on epigenetic variation alone should thus be possible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The considerable search for synergistic agents in cancer research is motivated by the therapeutic benefits achieved by combining anti-cancer agents. Synergistic agents make it possible to reduce dosage while maintaining or enhancing a desired effect. Other favorable outcomes of synergistic agents include reduction in toxicity and minimizing or delaying drug resistance. Dose-response assessment and drug-drug interaction analysis play an important part in the drug discovery process, however analysis are often poorly done. This dissertation is an effort to notably improve dose-response assessment and drug-drug interaction analysis. The most commonly used method in published analysis is the Median-Effect Principle/Combination Index method (Chou and Talalay, 1984). The Median-Effect Principle/Combination Index method leads to inefficiency by ignoring important sources of variation inherent in dose-response data and discarding data points that do not fit the Median-Effect Principle. Previous work has shown that the conventional method yields a high rate of false positives (Boik, Boik, Newman, 2008; Hennessey, Rosner, Bast, Chen, 2010) and, in some cases, low power to detect synergy. There is a great need for improving the current methodology. We developed a Bayesian framework for dose-response modeling and drug-drug interaction analysis. First, we developed a hierarchical meta-regression dose-response model that accounts for various sources of variation and uncertainty and allows one to incorporate knowledge from prior studies into the current analysis, thus offering a more efficient and reliable inference. Second, in the case that parametric dose-response models do not fit the data, we developed a practical and flexible nonparametric regression method for meta-analysis of independently repeated dose-response experiments. Third, and lastly, we developed a method, based on Loewe additivity that allows one to quantitatively assess interaction between two agents combined at a fixed dose ratio. The proposed method makes a comprehensive and honest account of uncertainty within drug interaction assessment. Extensive simulation studies show that the novel methodology improves the screening process of effective/synergistic agents and reduces the incidence of type I error. We consider an ovarian cancer cell line study that investigates the combined effect of DNA methylation inhibitors and histone deacetylation inhibitors in human ovarian cancer cell lines. The hypothesis is that the combination of DNA methylation inhibitors and histone deacetylation inhibitors will enhance antiproliferative activity in human ovarian cancer cell lines compared to treatment with each inhibitor alone. By applying the proposed Bayesian methodology, in vitro synergy was declared for DNA methylation inhibitor, 5-AZA-2'-deoxycytidine combined with one histone deacetylation inhibitor, suberoylanilide hydroxamic acid or trichostatin A in the cell lines HEY and SKOV3. This suggests potential new epigenetic therapies in cell growth inhibition of ovarian cancer cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transglutaminases are a family of calcium-dependent enzymes, that catalyze the covalent cross-linking of proteins by forming $\varepsilon(\gamma$-glutamyl)lysine isopeptide bonds. In order to investigate the molecular mechanisms regulating the expression of the tissue transglutaminase gene and to determine its biological functions, the goal of this research has been to clone and characterize the human tissue transglutaminase promoter. Thirteen clones of the tissue transglutaminase gene were obtained from the screening of a human placental genomic DNA library. A 1.74 Kb fragment derived from DNA located immediately upstream of the translation start site was subcloned and sequenced. Sequence analysis of this DNA fragment revealed that it contains a TATA box (TATAA), a CAAT box (GGACAAT), and a series of potential transcription factor binding sites and hormone response elements. Four regions of significant homology, a GC-rich region, a TG-rich region, an AG-rich region, and HR1, were identified by aligning 1.8 Kb of DNA flanking the human, mouse, and guinea pig tissue transglutaminase genes.^ To measure promoter activity, we subcloned the 1.74 Kb fragment of the tissue transglutaminase gene into a luciferase reporter vector to generate transglutaminase promoter/luciferase reporter constructs. Transfection experiments showed that this DNA segment includes a functional promoter with high constitutive activity. Deletion analysis revealed that the SP1 sites or corresponding sequences contribute to this activity. We investigated the role of DNA methylation in regulating the activity of the promoter and found that in vitro methylation of tissue transglutaminase promoter/luciferase reporter constructs suppressed their basal activity. Methylation of the promoter is inversely correlated with the expression of the tissue transglutaminase gene in vivo. These results suggest that DNA methylation may be one of the mechanisms regulating the expression of the gene. The tumor suppressor gene product p53 was also shown to inhibit the activity of the promoter, suggesting that induction of the tissue transglutaminase gene is not involved in the p53-dependent programmed cell death pathway. Although retinoids regulate the expression of the tissue transglutaminase gene in vivo, retinoid-inducible activity can not be identified in 3.7 Kb of DNA 5$\sp\prime$ to the tissue transglutaminase gene.^ The structure of the 5$\sp\prime$ end of the tissue transglutaminase gene was mapped. Alignment analysis of the human tissue transglutaminase gene with other human transglutaminases showed that tissue transglutaminase is the simplest member of transglutaminase superfamily. Transglutaminase genes show a conserved core of exons and introns but diverse N-terminuses and promoters. These observations suggest that key regulatory sequences and promoter elements have been appended upstream of the core transglutaminase gene to generate the diversity of regulated expression and regulated activity characteristic of the transglutaminase gene family. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ependymal tumors across age groups are currently classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patients' outcome. We aimed at establishing a uniform molecular classification using DNA methylation profiling. Nine molecular subgroups were identified in a large cohort of 500 tumors, 3 in each anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two supratentorial subgroups are characterized by prototypic fusion genes involving RELA and YAP1, respectively. Regarding clinical associations, the molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.