990 resultados para DI-2-PYRIDYL KETONE SALICYLOYLHYDRAZONE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Text: De itinere navali de eventibus deque regus, a peregrinis Hierosolymam petentibus, 1589, fortiter gestis narratio," pp. [15-31].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we have examined the activity and selectivity of new catalysts for the single-stage production of methyl isobutyl ketone (MIBK, 4- methyl-2-pentanone) from acetone (both in liquid and gas phase), using a fixed bed reactor operated in the temperature range between 373 and 473 K. The main reaction pathways for the synthesis of MIBK from acetone are given in Fig.1. The first step is the self condensation of acetone to diacetone alcohol (DAA, 4-hydroxy-4-methyl-2-pentanone); the second step is the dehydration of DAA to mesityl oxide (MO, 4-methyl-3-penten-2-one); the final step is the selective hydrogenation of the carbon–carbon double bond of MO to form MIBK. The most commonly observed side reactions are over-condensations and unselective hydrogenations (also shown in Fig.1). Two types of catalysts were studied: i)Pd supported on MgO-SiO2 mixed oxides with ratio of Mg to Si, synthetized using Ohnishi’s method and ii)Pd supported on alumina doped with 5% or 10% of MgO. The different Mg-Si and Mg-Al catalysts were characterized by different techniques (XRD, BET, SEM, NH3-TPD and CO2-TPD) and tested under different conditions in the condensation of acetone to diacetone alcohol and its dehydration to mesityl oxide to enhance the activity. Palladium was chosen as metal component, and its hydrogenation activity was studied. A low hydrogenation activity negatively affects the acetone conversion and promotes the production of mesityl oxide. Hydrogenation conditions being too severe may favor the unwanted hydrogenation of acetone to 2-propanol and of MIBK to methyl isobutyl carbinol (MIBC, 4-methyl-2-pentanol) but this effect is less detrimental to the MIBK selectivity than an unsufficient hydrogenation activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questo lavoro di tesi studia e analizza le prestazioni di applicazioni basate sui protocolli HTTP/2 e WebSocket, affrontando, anche in maniera sperimentale, due differenti tecniche: polling e push.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La società civile pone oggi particolare attenzione al tema della sostenibilità ambientale, di qui la crescente necessità di progettare e sviluppare imballaggi ecosostenibili e/o biodegradabili con elevate prestazioni. I materiali polimerici, in particolare i poliesteri, presentano sicuramente una valida soluzione. Un monomero proveniente da fonti rinnovabili che consente la realizzazione di polimeri dalle eccellenti proprietà meccaniche e barriera è l'acido 2,5-furandicarbossilico. Tuttavia, i poliesteri furan-based non possiedono le caratteristiche di biodegradabilità desiderate, inoltre sono materiali duri e fragili e quindi non idonei per l’imballaggio flessibile. In tale contesto si inserisce il presente lavoro di tesi che ha come scopo la realizzazione di un nuovo poli(estere uretano) multiblocco a base di acido 2,5-furandicarbossilico, caratterizzato da proprietà migliorate rispetto all’omopolimero di partenza (poli(esametilene 2,5-furanoato)), il quale presenti una maggiore velocità di degradazione, combinata con un comportamento meccanico elastomerico, e eccellenti proprietà barriera. Per questo sono state prese in considerazione due diverse unità copolimeriche: una cosiddetta “hard” il poli(esametilene 2,5-furanoato) e l’altra “soft” il poli(trietilene 2,5-furanoato). L’alternanza di queste due porzioni ha permesso di realizzare un copolimero tenace, con un’elevata temperatura di fusione (dovuta all’elevato grado di cristallinità del segmento hard), e con un basso modulo elastico ed un elevato allungamento a rottura (tipici invece del segmento soft). I risultati ottenuti hanno evidenziato come la copolimerizzazione abbia aumentato la flessibilità del materiale, la velocità di degradazione, entrambi grazie al ridotto grado di cristallinità. Infine il copolimero presenta eccellenti proprietà barriera, grazie alla presenza di una fase bidimensionale ordinata (mesofase).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The topic of this thesis concerns the study of catalytic processes for the synthesis of chiral 3,4,5-trisubstituted piperidine and 2,6-disubstituted morpholine. Substrates possessing an α,β-unsaturated ester and a ketone moiety, able to undergo addition/cyclization cascade reactions with different pro-nucleophiles (thiophenols, acetone cyanohydrin and malononitrile), have been evaluated. Chiral and achiral systems for phase-transfer catalysis have been applied as catalysts. Moderate enantiomeric excesses have been obtained for the morpholinic products and good to excellent values for the piperidinic products, by using cyclopeptoids and quaternary ammonium salts derived from Chincona alkaloids as catalysts respectively. Moreover, the absolute configuration of the 3,4,5-trisubstituted piperidines has been determined through quantomechanical simulations of their chirooptical spectra. Finally, the relative configuration of the 2,6-disubstituted morpholines has been assigned through NMR experiments.