923 resultados para DEAD Box Protein 20
Resumo:
There is an increasing interest towards the mechanism by which regulators of G-protein signaling regulate signals of G-protein-coupled receptors. RGS2 is a regulator of Gq protein signaling (RGS), the N-terminal region of which is known to contain determinants for G protein-coupled receptor recognition, but its structure is still unknown. To understand the molecular basis for this recognition, the three-dimensional model of RGS2, including N-terminal region and RGS box, was modeled. For this, RGS4 box structure and data from circular dichroism study of RGS2 N-terminal region were used. Then, membrane-targeting activity of the RGS2 amphipathic helix contained in the N-terminal region was investigated. Furthermore, in cellulo study provided first evidence that an internal sequence within the N-terminal region of RGS2 is involved in RGS2 regulation of cholecystokinin receptor-2 signal. RGS2 modeled structure can now serve to study molecular recognition of RGS2 by signaling molecules. © 2006 Elsevier Inc. All rights reserved.
Resumo:
T-box 2 (TBX2) is a transcription factor involved in mammary development and is known to be overexpressed in a subset of aggressive breast cancers. TBX2 has previously been shown to repress growth control genes such as p14(ARF) and p21(WAF1/cip1). In this study we show that TBX2 drives proliferation in breast cancer cells and this is abrogated after TBX2 small interfering RNA (siRNA) knockdown or after the expression of a dominant-negative TBX2 protein. Using microarray analysis we identified a large cohort of novel TBX2-repressed target genes including the breast tumour suppressor NDRG1 (N-myc downregulated gene 1). We show that TBX2 targets NDRG1 through a previously undescribed mechanism involving the recruitment of early growth response 1 (EGR1). We show EGR1 is required for the ability of TBX2 to repress NDRG1 and drive cell proliferation. We show that TBX2 interacts with EGR1 and that TBX2 requires EGR1 to target the NDRG1 proximal promoter. Abrogation of either TBX2 or EGR1 expression is accompanied by the upregulation of cell senescence and apoptotic markers. NDRG1 can recapitulate these effects when transfected into TBX2-expressing cells. Together, these data identify a novel mechanism for TBX2-driven oncogenesis and highlight the importance of NDRG1 as a growth control gene in breast tissue. Oncogene (2010) 29, 3252-3262; doi: 10.1038/onc.2010.84; published online 29 March 2010
Resumo:
WbaP catalyzes the transfer of galactose-1-phosphate onto undecaprenyl phosphate (Und-P). The enzyme belongs to a large family of bacterial membrane proteins required for initiation of the synthesis of O antigen lipopolysaccharide and polysaccharide capsules. Previous work in our laboratory demonstrated that the last transmembrane helix and C-terminal tail region of WbaP (WbaP(CT)) are sufficient for enzymatic activity. Here, we demonstrate the cytoplasmic location of the WbaP C-terminal tail and show that WbaPCT domain N-terminally fused to thioredoxin (TrxA-WbaP(CT)) exhibits improved protein folding and enhanced transferase activity. Alanine replacement of highly conserved charged or polar amino acids identified seven critical residues for enzyme activity in vivo and in vitro. Four of these residues are located in regions predicted to be a-helical. These regions and their secondary structure predictions are conserved in distinct WbaP family members, suggesting they may contribute to form a conserved catalytic center.
Resumo:
Diabetic retinopathy is one of the most common complications of diabetes and is a major cause of new blindness in the working-age population of developed countries. While the exact pathogenic basis of this condition remains ill defined, it is clear that hyperglycaemia is a critical factor in its aetiology. Protein kinase C (PKC) activation is one of the sequelae of hyperglycaemia and it is thought to play an important role in the development of diabetic complications. This review questions the currently held dogma that PKC stimulation in diabetes is solely mediated through the overproduction of palmitate and oleate enriched diacylglycerols. Blood glucose concentrations are closely tracked by changes in the levels of free fatty acids and these, in addition to oxidative stress, may account for the aberrant activation of PKCs in diabetes. Little is known about why PKCs fail to downregulate in diabetes and efforts should be directed towards acquiring such information. Considerable evidence implicates the PKCbeta isoform in the pathogenesis of diabetic retinopathy, but other isoforms may also be of relevance. In addition to PKCs, it is evident that novel diacyglycerol-activated non-kinase receptors could also play a role in the development of diabetic complications. Therapeutic agents have been developed to inhibit specific PKC isoforms and PKCbeta antagonists are currently undergoing clinical trials to test their toxicity and efficacy in suppressing diabetic complications. The likely impact of these drugs in the treatment of diabetic patients is considered.
Resumo:
Connective tissue growth factor (CTGF/CCN2) is a 38-kDa secreted protein, a prototypic member of the CCN family, which is up-regulated in many diseases, including atherosclerosis, pulmonary fibrosis, and diabetic nephropathy. We previously showed that CTGF can cause actin disassembly with concurrent down-regulation of the small GTPase Rho A and proposed an integrated signaling network connecting focal adhesion dissolution and actin disassembly with cell polarization and migration. Here, we further delineate the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The functional response of mesangial cells to treatment with CTGF was associated with the phosphorylation of Akt/protein kinase B (PKB) and resultant phosphorylation of a number of Akt/PKB substrates. Two of these substrates were identified as FKHR and p27(Kip-1). CTGF stimulated the phosphorylation and cytoplasmic translocation of p27(Kip-1) on serine 10. Addition of the PI-3 kinase inhibitor LY294002 abrogated this response; moreover, addition of the Akt/PKB inhibitor interleukin (IL)-6-hydroxymethyl-chiro-inositol-2(R)-2-methyl-3-O-octadecylcarbonate prevented p27(Kip-1) phosphorylation in response to CTGF. Immunocytochemistry revealed that serine 10 phosphorylated p27(Kip-1) colocalized with the ends of actin filaments in cells treated with CTGF. Further investigation of other Akt/PKB sites on p27(Kip-1), revealed that phosphorylation on threonine 157 was necessary for CTGF mediated p27(Kip-1) cytoplasmic localization; mutation of the threonine 157 site prevented cytoplasmic localization, protected against actin disassembly and inhibited cell migration. CTGF also stimulated an increased association between Rho A and p27(Kip-1). Interestingly, this resulted in an increase in phosphorylation of LIM kinase and subsequent phosphorylation of cofilin, suggesting that CTGF mediated p27(Kip-1) activation results in uncoupling of the Rho A/LIM kinase/cofilin pathway. Confirming the central role of Akt/PKB, CTGF-stimulated actin depolymerization only in wild-type mouse embryonic fibroblasts (MEFs) compared to Akt-1/3 (PKB alpha/gamma) knockout MEFs. These data reveal important mechanistic insights into how CTGF may contribute to mesangial cell dysfunction in the diabetic milieu and sheds new light on the proposed role of p27(Kip-1) as a mediator of actin rearrangement.
Resumo:
BACKGROUND: Although serum ECP concentrations have been reported in normal children, there are currently no published upper cutoff reference limits for serum ECP in normal, nonatopic, nonasthmatic children aged 1-15 years.
METHODS: We recruited 123 nonatopic, nonasthmatic normal children attending the Royal Belfast Hospital for Sick Children for elective surgery and measured serum ECP concentrations. The effects of age and exposure to environmental tobacco smoke (ETS) on the upper reference limits were studied by multiple regression and fractional polynomials.
RESULTS: The median serum ECP concentration was 6.5 microg/l and the 95th and 97.5 th percentiles were 18.8 and 19.9 microg/l. The median and 95th percentile did not vary with age. Exposure to ETS was not associated with altered serum ECP concentrations (P = 0.14).
CONCLUSIONS: The 95th and 97.5 th percentiles for serum ECP for normal, nonatopic, nonasthmatic children (aged 1-15 years) were 19 and 20 microg/l, respectively. Age and exposure to parental ETS did not significantly alter serum ECP concentrations or the normal upper reference limits. Our data provide cutoff upper reference limits for normal children for use of serum ECP in a clinical or research setting.
PMID: 10604557 [PubMed - indexed for MEDLINE]
Resumo:
X-box binding protein 1 (XBP1) is a key signal transducer in endoplasmic reticulum stress response, and its potential role in the atherosclerosis development is unknown. This study aims to explore the impact of XBP1 on maintaining endothelial integrity related to atherosclerosis and to delineate the underlying mechanism. We found that XBP1 was highly expressed at branch points and areas of atherosclerotic lesions in the arteries of ApoE(-/-) mice, which was related to the severity of lesion development. In vitro study using human umbilical vein endothelial cells (HUVECs) indicated that disturbed flow increased the activation of XBP1 expression and splicing. Overexpression of spliced XBP1 induced apoptosis of HUVECs and endothelial loss from blood vessels during ex vivo cultures because of caspase activation and down-regulation of VE-cadherin resulting from transcriptional suppression and matrix metalloproteinase-mediated degradation. Reconstitution of VE-cadherin by Ad-VEcad significantly increased Ad-XBP1s-infected HUVEC survival. Importantly, Ad-XBP1s gene transfer to the vessel wall of ApoE(-/-) mice resulted in development of atherosclerotic lesions after aorta isografting. These results indicate that XBP1 plays an important role in maintaining endothelial integrity and atherosclerosis development, which provides a potential therapeutic target to intervene in atherosclerosis.
Resumo:
The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.
Resumo:
SRC family kinases play essential roles in a variety of cellular functions, including proliferation, survival, differentiation, and apoptosis. The activities of these kinases are regulated by intramolecular interactions and by heterologous binding partners that modulate the transition between active and inactive structural conformations. p130(CAS) (CAS) binds directly to both the SH2 and SH3 domains of c-SRC and therefore has the potential to structurally alter and activate this kinase. In this report, we demonstrate that overexpression of full-length CAS in COS-1 cells induces c-SRC-dependent tyrosine phosphorylation of multiple endogenous cellular proteins. A carboxy-terminal fragment of CAS (CAS-CT), which contains the c-SRC binding site, was sufficient to induce c-SRC-dependent protein tyrosine kinase activity, as measured by tyrosine phosphorylation of cortactin, paxillin, and, to a lesser extent, focal adhesion kinase. A single amino acid substitution located in the binding site for the SRC SH3 domain of CAS-CT disrupted CAS-CT's interaction with c-SRC and inhibited its ability to induce tyrosine phosphorylation of cortactin and paxillin. Murine C3H10T1/2 fibroblasts that expressed elevated levels of tyrosine phosphorylated CAS and c-SRC-CAS complexes exhibited an enhanced ability to form colonies in soft agar and to proliferate in the absence of serum or growth factors. CAS-CT fully substituted for CAS in mediating growth in soft agar but was less effective in promoting serum-independent growth. These data suggest that CAS plays an important role in regulating specific signaling pathways governing cell growth and/or survival, in part through its ability to interact with and modulate the activity of c-SRC.
Resumo:
Introduction:
Ovarian cancer patients presenting with advanced stage (III/IV)
canceraretreatedwithcarboplatinumincombinationwithpaclitaxel.Despitea
significant initial response rate, fewer than 20% of patients become long-term
survivors. We have published that low MAD2 expression levels associate with
reduced progression free survival (PFS) in patients with high-grade serous
epithelial ovarian cancer (EOC). Moreover, we have demonstrated that MAD2
expressionisdown-regulatedbythemicroRNAmiR-433(
Furlong et al., 2011
).
Interestingly, miR-433 also down-regulates HDAC6 (
Simon et al., 2010
), which
uniquely deacetylates
a
-tubulin prior to HDAC6s binding to
b
-tubulin.
In vitro
studies have shown that HDAC6 inhibition in combination with paclitaxel
treatment enhances chemoresistant cancer cell death. To date, an interaction
between MAD2 and HDAC6 has not been reported.
Experimental design:
MAD2 and HDAC6 immunohistochemistry (IHC) and
Western blot analyses were performed to investigate the role of HDAC6 and
MAD2 in chemoresistance to paclitaxel in high-grade serous EOC.
Results and Discussion:
In vitro
experiments demonstrated that overex-
pression of pre-miR-433, which targets MAD2, resulted in down-regulation
of HDAC6 in EOC cell lines. High levels of HDAC6 are co-expressed with
MAD2 in the paclitaxel resistant UPN251 and OVCAR7 cell lines. While, all
4 paclitaxel resistant EOC cell lines express higher levels of miR-433 than
the paclitaxel sensitive A2780 cells, only ovca432 and ovca433 demonstrated
down-regulation of both HDAC6 and MAD2. Paclitaxel binds to
b
-tubulin and
causesmicrotubulepolymerizationinpaclitaxelsensitivecellsasdemonstrated
by tubulin acetylation in A2780 cells. However, paclitaxel failed to cause a
significant acetylation of
a
-tubulin and microtubule stabilisation in the resistant
UPN251 cells. Therefore resistance in this cell line may be mediated by
aberrantly high HDAC6 activity. We have previously shown that MAD2 knock-
down cells are resistant to paclitaxel (
Furlong F., et al., 2011; Prencipe M.,
et al., 2009
). We measured HDAC6 protein expression in MAD2 knockdown
cells and showed that MAD2 knockdown is associated with concomitant
up-regulation of HDAC6. We hypothesise that the up-regulation of HDAC6
by MAD2 knockdown renders cancer cells more resistant to paclitaxel and
increases the invasive potential of these cells. On-going experiments will test
this hypothesis. Lastly we have observed differential MAD2 and HDAC6 IHC
staining intensity in formalin fixed paraffin embedded EOC samples.
In conclusion
, we have reported on a novel interaction between MAD2 and
HDAC6 which may have important consequences for paclitaxel resistant EOC.
Moreover, understanding chemo-responsiveness in ovarian tumours will lead
to improved patient management and treatment options for women diagnosed
with this disease
Resumo:
OBJECTIVES: We aimed to highlight the utility of novel dissolving microneedle (MN)-based delivery systems for enhanced transdermal protein delivery. Vaccination remains the most accepted and effective approach in offering protection from infectious diseases. In recent years, much interest has focused on the possibility of using minimally invasive MN technologies to replace conventional hypodermic vaccine injections.
METHODS: The focus of this study was exploitation of dissolving MN array devices fabricated from 20% w/w poly(methyl vinyl ether/maleic acid) using a micromoulding technique, for the facilitated delivery of a model antigen, ovalbumin (OVA).
KEY FINDINGS: A series of in-vitro and in-vivo experiments were designed to demonstrate that MN arrays loaded with OVA penetrated the stratum corneum and delivered their payload systemically. The latter was evidenced by the activation of both humoral and cellular inflammatory responses in mice, indicated by the production of immunoglobulins (IgG, IgG1, IgG2a) and inflammatory cytokines, specifically interferon-gamma and interleukin-4. Importantly, the structural integrity of the OVA following incorporation into the MN arrays was maintained.
CONCLUSION: While enhanced manufacturing strategies are required to improve delivery efficiency and reduce waste, dissolving MN are a promising candidate for 'reduced-risk' vaccination and protein delivery strategies.