964 resultados para Cylindrical Pores
Resumo:
Submarine hull structure is a watertight envelope, under hydrostatic pressure when in operation. Stiffened cylindrical shells constitute the major portion of these submarine hulls and these thin shells under compression are susceptible to buckling failure. Normally loss of stability occurs at the limit point rather than at the bifurcation point and the stability analysis has to consider the change in geometry at each load step. Hence geometric nonlinear analysis of the shell forms becomes. a necessity. External hydrostatic pressure will follow the deformed configuration of the shell and hence follower force effect has to be accounted for. Computer codes have been developed based on all-cubic axisymmetric cylindrical shell finite element and discrete ring stiffener element for linear elastic, linear buckling and geometric nonIinear analysis of stiffened cylindrical shells. These analysis programs have the capability to treat hydrostatic pressure as a radial load and as a follower force. Analytical investigations are carried out on two attack submarine cylindrical hull models besides standard benchmark problems. In each case, the analysis has been carried out for interstiffener, interdeepframe and interbulkhead configurations. The shell stiffener attachment in each of this configuration has been represented by the simply supported-simply supported, clamped-clamped and fixed-fixed boundary conditions in this study. The results of the analytical investigations have been discussed and the observations and conclusions are described. Rotation restraint at the ends is influential for interstiffener and interbulkhead configurations and the significance of axial restraint becomes predominant in the interbulkhead configuration. The follower force effect of hydrostatic pressure is not significant in interstiffener and interdeepframe configurations where as it has very high detrimental effect on buckling pressure on interbulkhead configuration. The geometric nonlinear interbulkhead analysis incorporating follower force effect gives the critical value of buckling pressure and this analysis is recommended for the determination of collapse pressure of stiffened cylindrical submarine shells.
Resumo:
The author presents the development of a new dielectric resonator antenna(DRA) suitable for wideband wireless communication applications.The design comprises of a simple cylindrical dielectric resonator (DR) and a microstrip feed, in a low radiation-Q structure,enabling wide impedance bandwidth.The radiation pattern is conical shaped,resulted from thew low-Q structure.Dielectric constant of the DR,its dimensions and topological parameters of the feed line are the major design parameters of the antenna.By proper selection of these parameters,the DRA can be operated over a wideband width covering multiple wireless applications.The antenna is simulated using Ansoft HFSS TM and measured using HP 8510C vector network analyser.Some of the measured results are confirmed by using the Finite Difference Time Domain(FDTD) technique implemented in MATLAB.
Resumo:
New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.
Resumo:
We investigate adsorption of helium in nanoscopic polygonal pores at zero temperature using a finite-range density functional theory. The adsorption potential is computed by means of a technique denoted as the elementary source method. We analyze a rhombic pore with Cs walls, where we show the existence of multiple interfacial configurations at some linear densities, which correspond to metastable states. Shape transitions and hysterectic loops appear in patterns which are richer and more complex than in a cylindrical tube with the same transverse area.
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components
Resumo:
A numerical scheme is presented tor the solution of the shallow water equations in a single radial coordinate. This can prove useful when testing codes for the two-dimensional shallow water equations. The scheme is applied with success to problems involving converging and diverging bores.
Resumo:
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10∘). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90∘. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.
Resumo:
A systematic approach is presented for obtaining cylindrical distribution functions (CDF's) of noncrystalline polymers which have been oriented by extension. The scattering patterns and CDF's are also sharpened by the method proposed by Deas and by Ruland. Data from atactic poly(methyl methacrylate) and polystyrene are analysed by these techniques. The methods could also be usefully applied to liquid crystals.
Resumo:
The paper considers second kind integral equations of the form $\phi (x) = g(x) + \int_S {k(x,y)} \phi (y)ds(y)$ (abbreviated $\phi = g + K\phi $), in which S is an infinite cylindrical surface of arbitrary smooth cross section. The “truncated equation” (abbreviated $\phi _a = E_a g + K_a \phi _a $), obtained by replacing S by $S_a $, a closed bounded surface of class $C^2 $, the boundary of a section of the interior of S of length $2a$, is also discussed. Conditions on k are obtained (in particular, implying that K commutes with the operation of translation in the direction of the cylinder axis) which ensure that $I - K$ is invertible, that $I - K_a $ is invertible and $(I - K_a )^{ - 1} $ is uniformly bounded for all sufficiently large a, and that $\phi _a $ converges to $\phi $ in an appropriate sense as $a \to \infty $. Uniform stability and convergence results for a piecewise constant boundary element collocation method for the truncated equations are also obtained. A boundary integral equation, which models three-dimensional acoustic scattering from an infinite rigid cylinder, illustrates the application of the above results to prove existence of solution (of the integral equation and the corresponding boundary value problem) and convergence of a particular collocation method.
Resumo:
We have performed systematic Monte Carlo studies on the influence of shifting the walls in slit-like systems constructed from folded graphene sheets on their adsorption properties. Specifically, we have analysed the effect on the mechanism of argon adsorption (T = 87 K) and on adsorption and separation of three binary gas mixtures: CO2/N2, CO2/CH4 and CH4/N2 (T = 298 K). The effects of the changes in interlayer distance were also determined. We show that folding of the walls significantly improves the adsorption and separation properties in comparison to ideal slit-like systems. Moreover, we demonstrate that mutual shift of sheets (for small interlayer distances) causes the appearance of small pores between opposite bulges. This causes an increase in vapour adsorption at low pressures. Due to overlapping of interactions with opposite walls causing an increase in adsorption energy, the mutual shift of sheets is also connected with the rise in efficiency of mixtures separation. The effects connected with sheet orientation vanish as the interlayer distance increases.
Resumo:
The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions, it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in nondimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples. [DOI: 10.1115/1.4003542]