994 resultados para Cuyo
Resumo:
El objetivo general de la investigación es describir y caracterizar el razonamiento inductivo empleado por estudiantes de tercero y cuarto de Educación Secundaria Obligatoria en la resolución de problemas que pueden ser modelizados mediante una progresión aritmética de números naturales cuyo orden sea 1 o 2. El principal aporte teórico de este trabajo es la elaboración de un modelo de razonamiento inductivo que ha permitido describir el proceso seguido por los estudiantes. El procedimiento para la identificación y descripción de las estrategias en la resolución de problemas en los que se puede utilizar el razonamiento inductivo es un aporte metodológico destacado. Los 359 estudiantes participantes resolvieron una prueba individual escrita compuesta por seis problemas. El análisis de las producciones de los estudiantes permite obtener resultados sobre los pasos de razonamiento inductivo que emplean y las estrategias que utilizan.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de 3¼ y 4¼ de ESO al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de tercero y cuarto de Secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
A lo largo de esta lección hemos presentado una variedad de consideraciones interconectadas, cuyo objeto común ha sido la relación del número natural con los modos de pensamiento y de actuaciones prácticas de mujeres y hombres. Nuestra reflexión se ha centrado en tres elementos fundamentales:Unos instrumentos conceptuales: sistema de los números naturales, simbólicamente estructurado; su evolución histórica y su análisis conceptual.Los modos de uso de este sistema simbólico: funciones cognitivas, así como los estudios que se han propuesto delimitar y caracterizar tales funciones como parte del pensamiento humano, su evolución y las condiciones para su aprendizaje.Los campos de actuación: fenómenos, cuestiones y problemas, en los que se pone en práctica y se trabaja con este sistema; especial importancia hemos concedido a la reflexión crítica en relación con el período escolar.
Resumo:
El concepto de función ha evolucionado a través de la historia gracias a la superación de algunos obstáculos adheridos a otros conceptos como la razón, la proporción y la medida. Con base en ello, se prepara el camino para realizar una transposición didáctica y abordar desde allí la noción de función, apoyando el diseño y la implementación de una secuencia de actividades cuyo interés es mostrar que a través una de situación fundamental mediada por el análisis de facturas de servicios públicos, y las fases de la TSD1, es posible acercarse a la noción de función desde los isomorfismos de medida.
Resumo:
Durante el desarrollo de un curso de geometría plana para futuros profesores de matemáticas, profesora y estudiantes conforman una comunidad cuyo propósito es aprender a demostrar. La empresa del curso es construir un sistema axiomático para la geometría plana. Las tareas específicas están asociadas, en su mayoría, a situaciones problema cuya resolución involucra a los estudiantes en una actividad demostrativa en la que la geometría dinámica y la interacción social en el aula, gestionada por la profesora, juegan papeles esenciales. En este documento damos detalles de esta innovación.
Resumo:
En esta comunicación se presenta la primera parte de una investigación cuyo objetivo fue analizar si un experimento de enseñanza diseñado ad hoc ayudó a la construcción de caracterizaciones equivalentes del concepto de dependencia lineal, en lenguaje geométrico y analítico. En primer lugar se diseñó un experimento de enseñanza en un contexto de geometría dinámica utilizando simultáneamente representaciones geométricas y analíticas del concepto y se describió una ‘trayectoria hipotética de aprendizaje’ en términos del mecanismo de ‘reflexión sobre la relación actividad-efecto’. En segundo lugar se describieron las trayectorias de aprendizaje de estudiantes de 2o de bachillerato (17-18 años) identificando las ‘acciones de generalización’ y las ‘generalizaciones de la reflexión’.
Resumo:
Este trabajo se enmarca dentro de una investigación más amplia cuyo principal objetivo es indagar sobre la capacidad de los estudiantes de educación secundaria para traducir y relacionar enunciados algebraicos presentados en los sistemas de representación simbólico y verbal. La recogida de datos se realizó con 26 estudiantes de 4º de ESO a los que se propuso la construcción de un dominó algebraico, diseñado para esta investigación, y su posterior uso en un torneo. En este artículo presentamos un análisis de los errores cometidos en dichas traducciones. Entre los resultados obtenidos, destacamos que los estudiantes encontraron mayor facilidad al traducir enunciados de su representación simbólica a su representación verbal y que la mayoría de los errores cometidos al traducir de la expresión verbal a la simbólica son derivados de las características propias del lenguaje algebraico.
Resumo:
tema en el contexto educativo colombiano, llevan a que dos profesores de matemáticas de educación básica y media, se den a la tarea de diseñar y desarrollar una propuesta para la superación de sesgos en el razonamiento probabilístico de sus estudiantes. De esta manera, en el marco de la investigación-acción, se recoge la experiencia y reflexión de tres implementaciones de aula consecutivas: La primera con estudiantes de grado décimo, cuyo énfasis estuvo dado en el enfoque clásico de probabilidad, que llevó a que los estudiantes no tuvieran cambios significativos en sus argumentaciones respecto a los fenómenos de probabilidad; la segunda con estudiantes de grado séptimo, donde el enfoque fue netamente experimental, convirtiéndose en un obstáculo para desarrollar procesos de institucionalización del saber, que permitieran a los estudiantes formalizar algunos conceptos. Las reflexiones suscintas a esta experiencia llevaron al desarrollo de una tercera, también con estudiantes de grado séptimo, pero en otra institución, donde se construyó de manera conjunta y horizontal con los estudiantes una situación problema abierta a los dos enfoques de probabilidad (clásico y experimental) que permitió desarrollar las actividades de acuerdo al avance de cada grupo en el proceso de resolución. De ésta manera se contribuyó en forma significativa a la superación de sesgos probabilísticos, y se consolidó para nosotros un instrumento modelo para la enseñanza de las matemáticas.
Resumo:
En los últimos años y particularmente desde la aparición de los lineamientos curriculares (1998) el estudio de la educación estadística ha recobrado gran importancia para la formación de nuestros estudiantes, tanto de la educación básica como de la media y la superior. Este interés por formar una cultura estadística en los alumnos, se sustenta, desde nuestro punto de vista en tres cuestiones,igualmente importantes: 1. La necesidad social de formar ciudadanos capaces de comprender información codificada en lenguaje matemático. 2. El uso extendido de las nociones de probabilidad, azar, etc, presentes tanto en el conocimiento científico como en el conocimiento humano en general. 3. La responsabilidad de la escuela en general de ser un agente de formación para los nuevos ciudadanos. Desde estas posturas, encontramos importante señalar que la educación estadística tiene pues que abordar por lo menos los siguientes campos de formación: el análisis de datos, el tratamiento del azar y la probabilidad. En lo relativo al análisis de datos nos proponemos construir una propuesta que se diferencie de lo que hasta ahora hemos emprendido en los currículos escolares, tal es, el estudio de la estadística descriptiva en cuyo caso el énfasis en la enseñanza se centra en la ejercitación de los cálculos rutinarios resueltos con lápiz y papel, como son: gráficos, tablas, frecuencias, medidas y por último verificación de modelos. Alternativa a esta perspectiva nos proponemos utilizar el análisis exploratorio de datos enfatizando en la conceptualización sobre aspectos tales como la lectura crítica de datos, el uso de diferentes representaciones, el establecimiento de las similitudes (regularidades) y las variaciones, es decir, establecer un procedimiento de análisis que use los datos como el contexto de significado
Resumo:
Ernest (1989) afirmó que las creencias y concepciones de un profesor regulan su práctica de enseñanza en el aula. De esta manera, si se desean cambios en las prácticas de los profesores de matemáticas, al parecer, deben cambiar sus creencias y concepciones. Al respecto se generó la pregunta: ¿es posible cambiar las creencias y concepciones de los profesores? (Thompson, 1991). Las investigaciones de Senger (1999), D’Amore y Fandiño (2004) y Pehkonen (2006), entre otras, han arrojado resultados positivos acerca de que las creencias y concepciones de los profesores pueden cambiar. En este artículo se presentarán los resultados de una investigación cuyo objetivo primordial fue identificar y caracterizar cambios en las concepciones de los estudiantes para profesor de sexto semestre de Licenciatura en Educación Básica con Énfasis en Matemáticas (Bogotá, Colombia). En esencia se presentarán resultados que muestran las concepciones iniciales de los estudiantes y su cambio al finalizar la intervención.
Resumo:
El presente trabajo muestra parte de los resultados de un proyecto de investigación desarrollado en el Instituto Politécnico Nacional, relacionados con el estudio de variación, concepto que es esencial para analizar diferentes fenómenos físicos y de la vida cotidiana empleando para ello la exploración múltiples representaciones a partir de tratamientos cuantitativos, cuyo objetivo fue analizar las diferentes estrategias que el alumno emplea cuando enfrenta situaciones que están ligados a la noción de variación. En particular el estudio se enfocó en la noción de función que es vista como modelo para el estudio de la variación, para lo cual se diseñaron actividades con el propósito de fomentar la exploración de tratamientos cuantitativos que beneficien la identificación del contenido en múltiples representaciones. La experiencia se realizó con alumnos del nivel medio superior que cursaban la asignatura de Álgebra, impulsando un ambiente de comunicación y discusión continua.
Resumo:
El presente trabajo plantea la posibilidad de impulsar la Interpretación Global, en diversas representaciones para desarrollar tratamientos que permitan fomentar la exploración de sus contenidos. La experiencia se llevó a cabo con alumnos que cursaban la asignatura de álgebra del nivel medio superior, cuyo objetivo fue identificar las conjeturas y procesos cognitivos que el alumno desarrolla cuando se ha tenido la vivencia de explorar tratamientos cualitativos y cuantitativos en múltiples representaciones. Los resultados muestran la identificación de patrones cuando se plantean situaciones familiares en el alumno, así como el anclaje del contexto para algunos estudiantes y la descontextualización para otros.
Resumo:
El presente trabajo de investigación tiene por objetivo la obtención de indicadores para la organización de saberes matemáticos correspondientes al área de Precálculo, Geometría y Álgebra de nivel medio. Para la consecución de éste, se realiza en primera instancia un estudio documental el cual permitiera generar un estado del arte de propuestas didácticas generadas en Matemática Educativa en la última década, seguido de un estudio descriptivo cuyo objetivo es identificar aquellos elementos que caracterizan las propuestas como favorecedores de la construcción del conocimiento matemático. Particularmente nos centraremos en los resultados obtenidos al momento en el área de Precálculo, entre los cuales se tiene que las propuestas didácticas parecen tener en común el que la construcción del conocimiento se dé a través de la práctica humana y el carácter científico de los conocimientos matemáticos, como son: la predicción, la visualización y la modelación. La tecnología ya no es un recurso para el profesor sino una herramienta para el estudiante.
Resumo:
Presentamos una investigación cuyo objetivo es analizar la comprensión de la recta tangente en un entorno de aprendizaje en el que se puede usar un CAS. Desde las perspectivas históricas y cognitivas (APOS) analizaremos una serie textos de Bachillerato e Ingeniería que nos permitirá fijar una propuesta para la comprensión de la recta tangente como el límite de una sucesión de rectas secantes que tienen en común el punto de tangencia. Finalmente, mostramos unas herramientas diseñadas con el asistente matemático MATLAB© (génesis instrumental), accesibles online, que pueden ayudar a los estudiantes, especialmente en el registro gráfico, a construir los objetos cognitivos descritos en la descomposición genética.