965 resultados para Cumulative Distribution Function


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recurrence interval statistics for regional seismicity follows a universal distribution function, independent of the tectonic setting or average rate of activity (Corral, 2004). The universal function is a modified gamma distribution with power-law scaling of recurrence intervals shorter than the average rate of activity and exponential decay for larger intervals. We employ the method of Corral (2004) to examine the recurrence statistics of a range of cellular automaton earthquake models. The majority of models has an exponential distribution of recurrence intervals, the same as that of a Poisson process. One model, the Olami-Feder-Christensen automaton, has recurrence statistics consistent with regional seismicity for a certain range of the conservation parameter of that model. For conservation parameters in this range, the event size statistics are also consistent with regional seismicity. Models whose dynamics are dominated by characteristic earthquakes do not appear to display universality of recurrence statistics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel direct integration technique of the Manakov-PMD equation for the simulation of polarisation mode dispersion (PMD) in optical communication systems is demonstrated and shown to be numerically as efficient as the commonly used coarse-step method. The main advantage of using a direct integration of the Manakov-PMD equation over the coarse-step method is a higher accuracy of the PMD model. The new algorithm uses precomputed M(w) matrices to increase the computational speed compared to a full integration without loss of accuracy. The simulation results for the probability distribution function (PDF) of the differential group delay (DGD) and the autocorrelation function (ACF) of the polarisation dispersion vector for varying numbers of precomputed M(w) matrices are compared to analytical models and results from the coarse-step method. It is shown that the coarse-step method achieves a significantly inferior reproduction of the statistical properties of PMD in optical fibres compared to a direct integration of the Manakov-PMD equation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this thesis is to present numerical investigations of the polarisation mode dispersion (PMD) effect. Outstanding issues on the side of the numerical implementations of PMD are resolved and the proposed methods are further optimized for computational efficiency and physical accuracy. Methods for the mitigation of the PMD effect are taken into account and simulations of transmission system with added PMD are presented. The basic outline of the work focusing on PMD can be divided as follows. At first the widely-used coarse-step method for simulating the PMD phenomenon as well as a method derived from the Manakov-PMD equation are implemented and investigated separately through the distribution of a state of polarisation on the Poincaré sphere, and the evolution of the dispersion of a signal. Next these two methods are statistically examined and compared to well-known analytical models of the probability distribution function (PDF) and the autocorrelation function (ACF) of the PMD phenomenon. Important optimisations are achieved, for each of the aforementioned implementations in the computational level. In addition the ACF of the coarse-step method is considered separately, based on the result which indicates that the numerically produced ACF, exaggerates the value of the correlation between different frequencies. Moreover the mitigation of the PMD phenomenon is considered, in the form of numerically implementing Low-PMD spun fibres. Finally, all the above are combined in simulations that demonstrate the impact of the PMD on the quality factor (Q=factor) of different transmission systems. For this a numerical solver based on the coupled nonlinear Schrödinger equation is created which is otherwise tested against the most important transmission impairments in the early chapters of this thesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study developed statistical techniques to evaluate visual field progression for use with the Humphrey Field Analyzer (HFA). The long-term fluctuation (LF) was evaluated in stable glaucoma. The magnitude of both LF components showed little relationship with MD, CPSD and SF. An algorithm was proposed for determining the clinical necessity for a confirmatory follow-up examination. The between-examination variability was determined for the HFA Standard and FASTPAC algorithms in glaucoma. FASTPAC exhibited greater between-examination variability than the Standard algorithm across the range of sensitivities and with increasing eccentricity. The difference in variability between the algorithms had minimal clinical significance. The effect of repositioning the baseline in the Glaucoma Change Probability Analysis (GCPA) was evaluated. The global baseline of the GCPA limited the detection of progressive change at a single stimulus location. A new technique, pointwise univariate linear regressions (ULR), of absolute sensitivity and, of pattern deviation, against time to follow-up was developed. In each case, pointwise ULR was more sensitive to localised progressive changes in sensitivity than ULR of MD, alone. Small changes in sensitivity were more readily determined by the pointwise ULR than by the GCPA. A comparison between the outcome of pointwise ULR for all fields and for the last six fields manifested linear and curvilinear declines in the absolute sensitivity and the pattern deviation. A method for delineating progressive loss in glaucoma, based upon the error in the forecasted sensitivity of a multivariate model, was developed. Multivariate forecasting exhibited little agreement with GCPA in glaucoma but showed promise for monitoring visual field progression in OHT patients. The recovery of sensitivity in optic neuritis over time was modelled with a Cumulative Gaussian function. The rate and level of recovery was greater in the peripheral than the central field. Probability models to forecast the field of recovery were proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a two-dimensional water model investigation and development of a multiscale method for the modelling of large systems, such as virus in water or peptide immersed in the solvent. We have implemented a two-dimensional ‘Mercedes Benz’ (MB) or BN2D water model using Molecular Dynamics. We have studied its dynamical and structural properties dependence on the model’s parameters. For the first time we derived formulas to calculate thermodynamic properties of the MB model in the microcanonical (NVE) ensemble. We also derived equations of motion in the isothermal–isobaric (NPT) ensemble. We have analysed the rotational degree of freedom of the model in both ensembles. We have developed and implemented a self-consistent multiscale method, which is able to communicate micro- and macro- scales. This multiscale method assumes, that matter consists of the two phases. One phase is related to micro- and the other to macroscale. We simulate the macro scale using Landau Lifshitz-Fluctuating Hydrodynamics, while we describe the microscale using Molecular Dynamics. We have demonstrated that the communication between the disparate scales is possible without introduction of fictitious interface or approximations which reduce the accuracy of the information exchange between the scales. We have investigated control parameters, which were introduced to control the contribution of each phases to the matter behaviour. We have shown, that microscales inherit dynamical properties of the macroscales and vice versa, depending on the concentration of each phase. We have shown, that Radial Distribution Function is not altered and velocity autocorrelation functions are gradually transformed, from Molecular Dynamics to Fluctuating Hydrodynamics description, when phase balance is changed. In this work we test our multiscale method for the liquid argon, BN2D and SPC/E water models. For the SPC/E water model we investigate microscale fluctuations which are computed using advanced mapping technique of the small scales to the large scales, which was developed by Voulgarakisand et. al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

* This paper is supported by CICYT (Spain) under Project TIN 2005-08943-C02-01.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose is to develop expert systems where by-analogy reasoning is used. Knowledge “closeness” problems are known to frequently emerge in such systems if knowledge is represented by different production rules. To determine a degree of closeness for production rules a distance between predicates is introduced. Different types of distances between two predicate value distribution functions are considered when predicates are “true”. Asymptotic features and interrelations of distances are studied. Predicate value distribution functions are found by empirical distribution functions, and a procedure is proposed for this purpose. An adequacy of obtained distribution functions is tested on the basis of the statistical 2 χ –criterion and a testing mechanism is discussed. A theorem, by which a simple procedure of measurement of Euclidean distances between distribution function parameters is substituted for a predicate closeness determination one, is proved for parametric distribution function families. The proposed distance measurement apparatus may be applied in expert systems when reasoning is created by analogy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied.The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 65C05

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 62M20, 62-07, 62J05, 62P20.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62G32, 62G05.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62G32, 62G20.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60G70, 60F12, 60G10.