979 resultados para Cu-ZnO-ZrO2 : HZSM-5
Resumo:
This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.
Resumo:
Sintered, polycrystalline ZnO ceramics with copper as the only additive exhibit highly nonlinear current‐voltage characteristics. Increasing nonlinearity index (α=4–45) with Cu concentration of 0.01–1 mol % is also variable with respect to ceramic processing methods. Incorporation of Cu in the ZnO lattice is indicated from the electron probe microanalysis and the photoluminescence spectra. Cu acceptors are compensated by holes in the grain boundary layers, whereas the concentration of intrinsic donors is higher in the grain interior. The presence of positive charges leads to thinning of the depletion region, resulting in nonlinear characteristics.
Resumo:
Phase diagram studies show that at ambient pressure only one ternary oxide, Cu(2)Ln(2)O(5), is stable in the ternary systems Cu-Ln-O (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu) at high temperatures. The crystal structure of Cu(2)Ln(2)O(5) can be described as a zig-zag arrangement of one-dimensional Cu2O5 chains parallel to-the a-axis with Ln atoms occupying distorted octahedral sites between these chains. Four sets of emf measurements on Gibbs energy of formation of Cu(2)Ln(2)O(5) (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu; Y) from component binary oxides and one set of high-temperature solution calorimetric data on enthalpy of formation have been reported in the literature. Except for Cu2Y2O5, the measured values for the Gibbs energies of formation of all other Cu(2)Ln(2)O(5) compounds fall in a narrow band (+/-1 kJ mol(-1)) and indicate a regular increase in stability with decreasing ionic radius of the lanthanide ion. The values for the second law enthalpy of formation, derived from the temperature dependence of emf obtained in different studies, show larger differences, as high as 25 kJ mol(-1) for Cu2Tm2O5. Though associated with an uncertainty of +/-4 kJ mol(-1), the calorimetric measurements help to identify the best set of emf data. The trends in thermodynamic data correlate well with the global instability index (GII) based on the overall deviation from the valence sum rule. Low values for the index calculated from crystallographic information indicate higher stability. Higher values are indicative of the larger stress in the structure.
Resumo:
Zinc Oxide doped only with Cu shows highly nonlinear I–V characteristics. Microstructural observations of these ceramics reveal the presence of extensive dislocation network. The transmission electron microscopy (TEM) indicates that the dislocations are impurity decorated which arise as a result of limited solubility of CuO in ZnO. It is envisaged that the depletion region is generated in the region containing the dislocations because of the presence of acceptor type traps.
Resumo:
X-ray analysis of the ternary complex [Cu(5′-UMP)(im)2(H2O)]·4H2O, where 5′-UMP uridine-5′-monophosphate and IM = imidazole, reveals a novel metal binding mode of pyrimidine nucleotide through the ribose group.
Resumo:
The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A high-throughput screening was employed to identify new compounds in Cu(CH3COO)(2)center dot H2O-NIPA-heterocyclic ligand systems. Of the compounds identified, three compounds, Cu-3{(NO2)-C6H3-(COO)(2)}(3)(C3N6H6)] (1), Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2)}(CN4H)]center dot-(H2O) (II), and Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2}-)(CN5H2)]center dot 2(H2O) (III), have been isolated as good quality single crystals by employing conventional hydrothermal methods. Three other compounds, Cu-2{(NO2)-C6H3-(COO)(2)}-(CN4H)(H2O) (IIa), Cu-2{(NO2)-C6H3-(COO)(2)}(CN5H2) (IIIa), and Cu-2{(NO2)-C6H3-(COO)(2)}{(CN5H2)(2)}2H(2)O (IIIb), were identified by a combination of elemental analysis, thermogravimetric analysis (TGA), and IR spectroscopic studies, although their structures are yet to be determined. The single crystalline compounds were also characterized by elemental analysis, TGA, IR, UV vis, magnetic, and catalytic studies. The structures of the compounds have paddle wheel (I) and infinite Cu 0(H) Cu chains (II and HI) connected with NLPA and heterocyclic ligands forming two-(II) and three-dimensional (I and III) structures. The bound and lattice water molecules in 11 and 111 could be reversibly removed/inserted without affecting the structure. In the case of II, the removal of water gives rise to a structural transition, but the dehydrated phase reverts back to the original phase on prolonged exposure to atmospheric conditions. Magnetic studies indicate an overall antiferromagnetism in all of the compounds. Lewis acid catalytic studies indicate that compounds II and HI are active for cyanosilylation of imines.
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The title compound, La14V6CuO36.5, was prepared from a stoichiometric mixture of La2O3,V2O5, and CuO at 1050-1080 degreesC. The compound forms transparent, pale green crystals and was characterized by wavelength dispersive spectroscopy and single crystal X-ray diffraction. The structure contains isolated VO43- tetrahedra and [OCuO](3-) sticks dispersed in a lanthanum oxide network. Films of La14V6CuO36.5 were grown on R-plane sapphire by using pulsed laser deposition. Rutherford backscattering spectroscopic and X-ray diffraction analyses of the films showed oriented growth of the title phase, a similar to5 eV optical band gap and n-type conductivity. The compound is an example of a transparent copper(I) oxide.
Resumo:
The thiocarbohydrazone Schiff-base ligand with a nitrogen and sulphur donor was synthesized through condensation of pyridine-2-carbaldehyde and thiocarbohydrazide. Schiff-base ligands have the ability to conjugate with metal salts. A series of metal complexes with a general formula [MCl(2)(H(2)L)]center dot nH(2)O (M=Ni, Co, Cu and Zn) were synthesized by forming complexes of the N(1),N5-bis[pyridine-2-methylene]thiocarbohydrazone (H2L) Schiff-base ligand. These metal complexes and ligand were characterized by using ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FT-IR), (1)H and (13)C NMR spectroscopy and mass spectroscopy, physicochemical characterization, CHNS and conductivity. The biological activity of the synthesized ligand was investigated by using Escherichia coli DNA as target. The DNA interaction of the synthesized ligand and complexes on E. coli plasmid DNA was investigated in the aqueous medium by UV-Vis spectroscopy and the binding constant (K(b)) was calculated. The DNA binding studies showed that the metal complexes had an improved interaction due to trans-geometrical isomers of the complexes than ligand isomers in cis-positions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A reaction of copper acetate, 5-nitroisophthalic acid in a water-methanol mixture under solvothermal condition results in a new metal-organic framework compound, [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, (1). The compound contains Cu5 pentameric cluster units connected by 5-nitro isophthalate (NIPA) moieties forming a CdCl(2)-like layer, which are further connected by another NIPA moiety forming the three-dimensional structure. The water molecules in (1) can be reversibly adsorbed. The removal of water accompanies a change in the colour as well as a structural re-organization. Magnetic studies suggest strong antiferromagnetie correlations between the Cu5 cluster units. The compound (1) exhibits heterogeneous Lewis acid catalysis for the cyanosilylation of imines with more than 95 % selectivity. Compound (1) has been characterized by IR, UV-vis, TGA, powder XRD studies.
Resumo:
Free-standing ZnO nanocrystals simultaneously doped with Fe and Cu with varying Fe/Cu compositions have been synthesized using colloidal methods with a mean size of similar to 7.7 nm. Interestingly, while the Cu-doped ZnO nanocrystal remains diamagnetic and Fe-doped samples show antiferromagnetic interactions between Fe sites without any magnetic ordering down to the lowest temperature investigated, samples doped simultaneously with Fe and Cu show a qualitative departure in exhibiting ferromagnetic interactions, with suggestions of ferromagnetic order at low temperature. XAS measurements establish the presence of Fe2+ and Fe3+ ions, with the concentration of the trivalent species increasing in the presence of Cu doping, providing direct evidence of the Fe2+ + Cu2+ sic Fe3+ + Cu+ redox couple being correlated with the ferromagnetic property. Using DFT, the unexpected ferromagnetic nature of these systems is explained in terms of a double exchange between Fe atoms, mediated by the Cu atom, in agreement with experimental observations.
Resumo:
For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.
Resumo:
Full solar spectrum absorbers are widely pursued for applications related to photocatalysis and photovoltaics. Here we report multivalent Cu-doped ZnO nanoparticles which exhibit full solar spectrum absorbance and high photoactivity. Metathesis-based, green-chemical approaches with synthesis yield of similar to 100% are used. Cu incorporation in ZnO results in an increase of average solar spectrum absorbance from a mere 0.4% to 34%. On the other hand, (Zn, Cu)0 composites result in materials with up to 64% average solar spectrum absorbance. Doped systems operate well under both visible and UV illumination. The nanomaterials prepared are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). Photocatalysts explored have particle sizes >= 50 nm. This is deliberately done in order to avoid the nanotoxic size regime of ZnO. Despite the large particle size and low specific surface area (<20 m(2).g(-1)), the best catalyst reported here compare favorably with recent reports on ZnO based systems. Using X-photoelectron spectroscopy and synthesis property correlations, we infer that the presence of multivalent Cu (most likely in the form of Cu1+delta) on ZnO surface is responsible for the observed photoactivity enhancement.
Resumo:
In this letter, we submit our comment on the following recently published papers by Kalidas Das: (1) ``Influence of chemical reaction and viscous dissipation on MHD mixed convection flow,'' Journal of Mechanical Science and Technology 28 (5) (2014) 1881-1885; and (2) ``Cu-water nanofluid flow and heat transfer over a shrinking sheet,'' Journal of Mechanical Science and Technology 28 (12) (2014) 5089-5094. The authors attempt to present the similarity solutions in both papers. We comment that the similarity transformations considered in Refs. 1, 2] are incorrect. Thus, the results presented by Kalidas Das lead to invalid conclusions.