655 resultados para Cosmic conciousness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the influence of solar variability on the Earth’s climate requires knowledge of solar variability, solar-terrestrial interactions and the mechanisms determining the response of the Earth’s climate system. We provide a summary of our current understanding in each of these three areas. Observations and mechanisms for the Sun's variability are described, including solar irradiance variations on both decadal and centennial timescales and their relation to galactic cosmic rays. Corresponding observations of variations of the Earth’s climate on associated timescales are described, including variations in ozone, temperatures, winds, clouds, precipitation and regional modes of variability such as the monsoons and the North Atlantic Oscillation. A discussion of the available solar and climate proxies is provided. Mechanisms proposed to explain these climate observations are described, including the effects of variations in solar irradiance and of charged particles. Finally, the contribution of solar variations to recent observations of global climate change are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously placed the solar contribution to recent global warming in context using observations and without recourse to climate models. It was shown that all solar forcings of climate have declined since 1987. The present paper extends that analysis to include the effects of the various time constants with which the Earth’s climate system might react to solar forcing. The solar input waveform over the past 100 years is defined using observed and inferred galactic cosmic ray fluxes, valid for either a direct effect of cosmic rays on climate or an effect via their known correlation with total solar irradiance (TSI), or for a combination of the two. The implications, and the relative merits, of the various TSI composite data series are discussed and independent tests reveal that the PMOD composite used in our previous paper is the most realistic. Use of the ACRIM composite, which shows a rise in TSI over recent decades, is shown to be inconsistent with most published evidence for solar influences on pre-industrial climate. The conclusions of our previous paper, that solar forcing has declined over the past 20 years while surface air temperatures have continued to rise, are shown to apply for the full range of potential time constants for the climate response to the variations in the solar forcings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multivariate fit to the variation in global mean surface air temperature anomaly over the past half century is presented. The fit procedure allows for the effect of response time on the waveform, amplitude and lag of each radiative forcing input, and each is allowed to have its own time constant. It is shown that the contribution of solar variability to the temperature trend since 1987 is small and downward; the best estimate is -1.3% and the 2sigma confidence level sets the uncertainty range of -0.7 to -1.9%. The result is the same if one quantifies the solar variation using galactic cosmic ray fluxes (for which the analysis can be extended back to 1953) or the most accurate total solar irradiance data composite. The rise in the global mean air surface temperatures is predominantly associated with a linear increase that represents the combined effects of changes in anthropogenic well-mixed greenhouse gases and aerosols, although, in recent decades, there is also a considerable contribution by a relative lack of major volcanic eruptions. The best estimate is that the anthropogenic factors contribute 75% of the rise since 1987, with an uncertainty range (set by the 2sigma confidence level using an AR(1) noise model) of 49–160%; thus, the uncertainty is large, but we can state that at least half of the temperature trend comes from the linear term and that this term could explain the entire rise. The results are consistent with the intergovernmental panel on climate change (IPCC) estimates of the changes in radiative forcing (given for 1961–1995) and are here combined with those estimates to find the response times, equilibrium climate sensitivities and pertinent heat capacities (i.e. the depth into the oceans to which a given radiative forcing variation penetrates) of the quasi-periodic (decadal-scale) input forcing variations. As shown by previous studies, the decadal-scale variations do not penetrate as deeply into the oceans as the longer term drifts and have shorter response times. Hence, conclusions about the response to century-scale forcing changes (and hence the associated equilibrium climate sensitivity and the temperature rise commitment) cannot be made from studies of the response to shorter period forcing changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meteorological measurements from Lerwick Observatory, Shetland (60°09′N, 1°08′W), are compared with short-term changes in Climax neutron counter cosmic ray measurements. For transient neutron count reductions of 10–12%, broken cloud becomes at least 10% more frequent on the neutron minimum day, above expectations from sampling. This suggests a rapid timescale (1 day) cloud response to cosmic ray changes. However, larger or smaller neutron count reductions do not coincide with cloud responses exceeding sampling effects. Larger events are too rare to provide a robust signal above the sampling noise. Smaller events are too weak to be observed above the natural variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current flowing in the global atmospheric electrical circuit (AEC) substantially decreased during the twentieth century. Fair-weather potential gradient (PG) observations in Scotland and Shetland show a previously unreported annual decline from 1920 to 1980, when the measurements ceased. A 25% reduction in PG occurred in Scotland 1920–50, with the maximum decline during the winter months. This is quantitatively explained by a decrease in cosmic rays (CR) increasing the thunderstorm-electrosphere coupling resistance, reducing the ionospheric potential VI. Independent measurements of VI also suggest a reduction of 27% from 1920–50. The secular decrease will influence fair weather atmospheric electrical parameters, including ion concentrations and aerosol electrification. Between 1920–50, the PG showed a negative correlation with global temperature, despite the positive correlation found recently between surface temperature and VI. The 1980s stabilisation in VI may arise from compensation of the continuing CR-induced decline by increases in global temperature and convective electrification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray–cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescales

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrical current of the order one picoamp per metre squared flows vertically in the Earth's atmosphere, between the ionosphere at approximately 50km altitude and the surface. This current is generated by global thunderstorm activity and is modulated by galactic cosmic rays and atmospheric aerosol. In fair weather conditions, this current cause a vertical atmospheric electric field, commonly measured as a potential gradient. For circumstances other than fair weather conditions, the potential gradient varies, from small steady enhancements in fog to large fluctuations in thunderstorms. The atmospheric potential gradient is continuously monitored at the Reading University Atmospheric Observatory. An account of the variability of the potential gradient on a variety of time scales will be presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent decline in the open magnetic flux of the Sun heralds the end of the Grand Solar Maximum (GSM) that has persisted throughout the space age, during which the largest‐fluence Solar Energetic Particle (SEP) events have been rare and Galactic Cosmic Ray (GCR) fluxes have been relatively low. In the absence of a predictive model of the solar dynamo, we here make analogue forecasts by studying past variations of solar activity in order to evaluate how long‐term change in space climate may influence the hazardous energetic particle environment of the Earth in the future. We predict the probable future variations in GCR flux, near‐Earth interplanetary magnetic field (IMF), sunspot number, and the probability of large SEP events, all deduced from cosmogenic isotope abundance changes following 24 GSMs in a 9300‐year record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent solar minimum was the longest and deepest of the space age, with the lowest average sunspot numbers for nearly a century. The Sun appears to be exiting a grand solar maximum (GSM) of activity which has persisted throughout the space age, and is headed into a significantly quieter period. Indeed, initial observations of solar cycle 24 (SC24) continue to show a relatively low heliospheric magnetic field strength and sunspot number (R), despite the average latitude of sunspots and the inclination of the heliospheric current sheet showing the rise to solar maximum is well underway. We extrapolate the available SC24 observations forward in time by assuming R will continue to follow a similar form to previous cycles, despite the end of the GSM, and predict a very weak cycle 24, with R peaking at ∼65–75 around the middle/end of 2012. Similarly, we estimate the heliospheric magnetic field strength will peak around 6nT. We estimate that average galactic cosmic ray fluxes above 1GV rigidity will be ∼10% higher in SC24 than SC23 and that the probability of a large SEP event during this cycle is 0.8, compared to 0.5 for SC23. Comparison of the SC24 R estimates with previous ends of GSMs inferred from 9300 years of cosmogenic isotope data places the current evolution of the Sun and heliosphere in the lowest 5% of cases, suggesting Maunder Minimum conditions are likely within the next 40 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2011 is the centenary year of the short paper (Wilson,1911) first describing the cloud chamber, the device for visualising high-energy charged particles which earned the Scottish physicist Charles Thomas Rees (‘CTR’) Wilson the 1927 Nobel Prize for physics. His many achievements in atmospheric science, some of which have current relevance, are briefly reviewed here. CTR Wilson’s lifetime of scientific research work was principally in atmospheric electricity at the Cavendish Laboratory, Cambridge; he was Reader in Electrical Meteorology from 1918 and Jacksonian Professor from 1925 to 1935. However, he is immortalised in physics for his invention of the cloud chamber, because of its great significance as an early visualisation tool for particles such as cosmic rays1 (Galison, 1997). Sir Lawrence Bragg summarised its importance:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A description is given of the global atmospheric electric circuit operating between the Earth’s surface and the ionosphere. Attention is drawn to the huge range of horizontal and vertical spatial scales, ranging from 10−9 m to 1012 m, concerned with the many important processes at work. A similarly enormous range of time scales is involved from 10−6 s to 109 s, in the physical effects and different phenomena that need to be considered. The current flowing in the global circuit is generated by disturbed weather such as thunderstorms and electrified rain/shower clouds, mostly occurring over the Earth’s land surface. The profile of electrical conductivity up through the atmosphere, determined mainly by galactic cosmic ray ionization, is a crucial parameter of the circuit. Model simulation results on the variation of the ionospheric potential, ∼250 kV positive with respect to the Earth’s potential, following lightning discharges and sprites are summarized. Experimental results comparing global circuit variations with the neutron rate recorded at Climax, Colorado, are then discussed. Within the return (load) part of the circuit in the fair weather regions remote from the generators, charge layers exist on the upper and lower edges of extensive layer clouds; new experimental evidence for these charge layers is also reviewed. Finally, some directions for future research in the subject are suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-speed solar wind streams modify the Earth's geomagnetic environment, perturbing the ionosphere, modulating the flux of cosmic rays into the Earth atmosphere, and triggering substorms. Such activity can affect modern technological systems. To investigate the potential for predicting the arrival of such streams at Earth, images taken by the Heliospheric Imager (HI) on the STEREO-A spacecraft have been used to identify the onsets of high-speed solar wind streams from observations of regions of increased plasma concentrations associated with corotating interaction regions, or CIRs. In order to confirm that these transients were indeed associated with CIRs and to study their average properties, arrival times predicted from the HI images were used in a superposed epoch analysis to confirm their identity in near-Earth solar wind data obtained by the Advanced Composition Explorer (ACE) spacecraft and to observe their influence on a number of salient geophysical parameters. The results are almost identical to those of a parallel superposed epoch analysis that used the onset times of the high-speed streams derived from east/west deflections in the ACE measurements of solar wind speed to predict the arrival of such streams at Earth, assuming they corotated with the Sun with a period of 27 days. Repeating the superposed epoch analysis using restricted data sets demonstrates that this technique can provide a timely prediction of the arrival of CIRs at least 1 day ahead of their arrival at Earth and that such advanced warning can be provided from a spacecraft placed 40° ahead of Earth in its orbit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature relevant to how solar variability influences climate is vast—but much has been based on inadequate statistics and non-robust procedures. The common pitfalls are outlined in this review. The best estimates of the solar influence on the global mean air surface temperature show relatively small effects, compared with the response to anthropogenic changes (and broadly in line with their respective radiative forcings). However, the situation is more interesting when one looks at regional and season variations around the global means. In particular, recent research indicates that winters in Eurasia may have some dependence on the Sun, with more cold winters occurring when the solar activity is low. Advances in modelling ‘‘top-down’’ mechanisms, whereby stratospheric changes influence the underlying troposphere, offer promising explanations of the observed phenomena. In contrast, the suggested modulation of low-altitude clouds by galactic cosmic rays provides an increasingly inadequate explanation of observations.