829 resultados para Cortico-cortical projection
Resumo:
The technique of point-projection spectroscopy has been shown to be applicable to the study of expanding aluminum plasmas generated by approximately 80 ps laser pulses incident on massive, aluminum stripe targets of approximately 125-mu-m width. Targets were irradiated at an intensity of 2.5 +/- 0.5 x 10(13) W/cm2 in a line focus geometry and under conditions similar to those of interest in x-ray laser schemes. Hydrogenic and heliumlike aluminum resonance lines were observed in absorption using a quasicontinuous uranium back-lighter plasma. Using a pentaerythrital Bragg crystal as the dispersive element, a resolving power of approximately 3500 was achieved with spatial resolution at the 5-mu-m level in frame times of the order of 100 ps. Reduction of the data for times up to 150 ps after the peak of the incident laser pulse produced estimates of the temperature and ion densities present, as a function of space and time. The one-dimensional Lagrangian hydrodynamic code MEDUSA coupled to the atomic physics non-local-thermodynamic-equilibrium ionized material package was used to simulate the experiment in planar geometry and has been shown to be consistent with the measurements.
Resumo:
Background: Neuropsychological deficits have been reported in association with first-episode psychosis (FEP). Reductions in grey matter (GM) volumes have been documented in FEP subjects compared to healthy controls. However, the possible inter-relationship between the findings of those two lines of research has been scarcely investigated.
Objective: To investigate the relationship between neuropsychological deficits and GM volume abnormalities in a population-based sample of FEP patients compared to healthy controls from the same geographical area.
Methods: FEP patients (n = 88) and control subjects (n = 86) were evaluated by neuropsychological assessment (Controlled Oral Word Association Test, forward and backward digit span tests) and magnetic resonance imaging using voxel-based morphometry.
Results: Single-group analyses showed that prefrontal and temporo-parietal GM volumes correlated significantly (p < 0.05, corrected) with cognitive performance in FEP patients. A similar pattern of direct correlations between neocortical GM volumes and cognitive impairment was seen in the schizophrenia subgroup (n = 48). In the control group, cognitive performance was directly correlated with GM volume in the right dorsal anterior cingulate cortex and inversely correlated with parahippocampal gyral volumes bilaterally. Interaction analyses with "group status" as a predictor variable showed significantly greater positive correlation within the left inferior prefrontal cortex (BA46) in the FEP group relative to controls, and significantly greater negative correlation within the left parahippocampal gyrus in the control group relative to FEP patients.
Conclusion: Our results indicate that cognitive deficits are directly related to brain volume abnormalities in frontal and temporo-parietal cortices in FEP subjects, most specifically in inferior portions of the dorsolateral prefrontal cortex. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Slower postnatal growth is an important predictor of adverse neurodevelopmental outcomes in infants born preterm. However, the relationship between postnatal growth and cortical development remains largely unknown. Therefore, we examined the association between neonatal growth and diffusion tensor imaging measures of microstructural cortical development in infants born very preterm. Participants were 95 neonates born between 24 and 32 weeks gestational age studied twice with diffusion tensor imaging: scan 1 at a median of 32.1 weeks (interquartile range, 30.4 to 33.6) and scan 2 at a median of 40.3 weeks (interquartile range, 38.7 to 42.7). Fractional anisotropy and eigenvalues were recorded from 15 anatomically defined cortical regions. Weight, head circumference, and length were recorded at birth and at the time of each scan. Growth between scans was examined in relation to diffusion tensor imaging measures at scans 1 and 2, accounting for gestational age, birth weight, sex, postmenstrual age, known brain injury (white matter injury, intraventricular hemorrhage, and cerebellar hemorrhage), and neonatal illness (patent ductus arteriosus, days intubated, infection, and necrotizing enterocolitis). Impaired weight, length, and head growth were associated with delayed microstructural development of the cortical gray matter (fractional anisotropy: P <0.001), but not white matter (fractional anisotropy: P = 0.529), after accounting for prenatal growth, neonatal illness, and brain injury. Avoiding growth impairment during neonatal care may allow cortical development to proceed optimally and, ultimately, may provide an opportunity to reduce neurological disabilities related to preterm birth.
Resumo:
Children born very preterm, even with broadly normal IQ, commonly show selective difficulties in visuospatial processing and executive functioning. Very little, however, is known what alterations in cortical processing underlie these deficits. We recorded MEG while eight children born very preterm (=32 weeks gestational age) and eight full-term controls performed a visual short-term memory task at mean age 7.5 years (range 6.4 - 8.4). Previously, we demonstrated increased long-range alpha and beta band phase synchronization between MEG sensors during STM retention in a group of 17 full-term children age 6-10 years. Here we present preliminary evidence that long-range phase synchronization in very preterm children, relative to controls, is reduced in the alpha-band but increased in the theta-band. In addition, we investigated cortical activation during STM retention employing synthetic aperture magnetometry (SAM) beamformer to localize changes in gamma-band power. Preliminary results indicate sequential activation of occipital, parietal and frontal cortex in control children, as well as reduced activation in very preterm children relative to controls. These preliminary results suggest that children born very preterm exhibit altered inter-regional functional connectivity and cortical activation during cognitive processing.
Resumo:
It has been argued that the variation in brain activity that occurs when observing another person reflects a representation of actions that is indivisible, and which plays out in full once the intent of the actor can be discerned. We used transcranial magnetic stimulation to probe the excitability of corticospinal projections to 2 intrinsic hand muscles while motions to reach and grasp an object were observed. A symbolic cue either faithfully indicated the required final orientation of the object and thus the nature of the grasp that was required, or was in conflict with the movement subsequently displayed. When the cue was veridical, modulation of excitability was in accordance with the functional role of the muscles in the action observed. If however the cue had indicated that the alternative grasp would be required, modulation of output to first dorsal interosseus was consistent with the action specified, rather than the action observed-until the terminal phase of the motion sequence during which the object was seen lifted. Modulation of corticospinal output during observation is thus segmented-it progresses initially in accordance with the action anticipated, and if discrepancies are revealed by visual input, coincides thereafter with that of the action seen.
Resumo:
Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the object (transport component), but also preshaping the hand according to the features of the object (grip component). Yet, the functional influence that specific PPC regions exert over ipsilateral M1 during the planning of different hand movements remains unclear in humans. Here we manipulated transport and grip components of goal-directed hand movements and exploited paired-pulse transcranial magnetic stimulation (ppTMS) to probe the functional interactions between M1 and two different PPC regions, namely superior parieto-occipital cortex (SPOC) and the anterior region of the intraparietal sulcus (aIPS), in the left hemisphere. We show that when the extension of the arm is required to contact a target object, SPOC selectively facilitates motor evoked potentials, suggesting that SPOC-M1 interactions are functionally specific to arm transport. In contrast, a different pathway, linking the aIPS and ipsilateral M1, shows enhanced functional connections during the sensorimotor planning of grip. These results support recent human neuroimaging findings arguing for specialized human parietal regions for the planning of arm transport and hand grip during goal-directed actions. Importantly, they provide new insight into the causal influences these different parietal regions exert over ipsilateral motor cortex for specific types of planned hand movements
Resumo:
Creep of Steel Fiber Reinforced Concrete (SFRC) under flexural loads in the cracked state and to what extent different factors determine creep behaviour are quite understudied topics within the general field of SFRC mechanical properties. A series of prismatic specimens have been produced and subjected to sustained flexural loads. The effect of a number of variables (fiber length and slenderness, fiber content, and concrete compressive strength) has been studied in a comprehensive fashion. Twelve response variables (creep parameters measured at different times) have been retained as descriptive of flexural creep behaviour. Multivariate techniques have been used: the experimental results have been projected to their latent structure by means of Principal Components Analysis (PCA), so that all the information has been reduced to a set of three latent variables. They have been related to the variables considered and statistical significance of their effects on creep behaviour has been assessed. The result is a unified view on the effects of the different variables considered upon creep behaviour: fiber content and fiber slenderness have been detected to clearly modify the effect that load ratio has on flexural creep behaviour.
Resumo:
Sparse representation based visual tracking approaches have attracted increasing interests in the community in recent years. The main idea is to linearly represent each target candidate using a set of target and trivial templates while imposing a sparsity constraint onto the representation coefficients. After we obtain the coefficients using L1-norm minimization methods, the candidate with the lowest error, when it is reconstructed using only the target templates and the associated coefficients, is considered as the tracking result. In spite of promising system performance widely reported, it is unclear if the performance of these trackers can be maximised. In addition, computational complexity caused by the dimensionality of the feature space limits these algorithms in real-time applications. In this paper, we propose a real-time visual tracking method based on structurally random projection and weighted least squares techniques. In particular, to enhance the discriminative capability of the tracker, we introduce background templates to the linear representation framework. To handle appearance variations over time, we relax the sparsity constraint using a weighed least squares (WLS) method to obtain the representation coefficients. To further reduce the computational complexity, structurally random projection is used to reduce the dimensionality of the feature space while preserving the pairwise distances between the data points in the feature space. Experimental results show that the proposed approach outperforms several state-of-the-art tracking methods.
Resumo:
PURPOSE:
To quantify the risk for age-related cortical cataract and posterior subcapsular cataract (PSC) associated with having an affected sibling after adjusting for known environmental and personal risk factors.
DESIGN:
Sibling cohort study.
PARTICIPANTS:
Participants in the ongoing Salisbury Eye Evaluation (SEE) study (n = 321; mean age, 78.1+/-4.2 years) and their locally resident siblings (n = 453; mean age, 72.6+/-7.4 years) were recruited at the time of Rounds 3 and 4 of the SEE study. INTERVENTION/TESTING METHODS: Retroillumination photographs of the lens were graded for the presence of cortical cataract and PSC with the Wilmer grading system. The residual correlation between siblings' cataract grades was estimated after adjustment for a number of factors (age; gender; race; lifetime exposure to ultraviolet-B light; cigarette, alcohol, estrogen, and steroid use; serum antioxidants; history of diabetes; blood pressure; and body mass index) suspected to be associated with the presence of cataract.
RESULTS:
The average sibship size was 2.7 per family. Multivariate analysis revealed the magnitude of heritability (h(2)) for cortical cataract to be 24% (95% CI, 6%-42%), whereas that for PSC was not statistically significant (h(2) 4%; 95% CI, 0%-11%) after adjustment for the covariates. The model revealed that increasing age, female gender, a history of diabetes, and black race increased the odds of cortical cataract, whereas higher levels of provitamin A were protective. A history of diabetes and steroid use increased the odds for PSC.
CONCLUSIONS:
This study is consistent with a significant genetic effect for age-related cortical cataract but not PSC.
Resumo:
Letter to the Editors
Resumo:
Models of visual perception are based on image representations in cortical area V1 and higher areas which contain many cell layers for feature extraction. Basic simple, complex and end-stopped cells provide input for line, edge and keypoint detection. In this paper we present an improved method for multi-scale line/edge detection based on simple and complex cells. We illustrate the line/edge representation for object reconstruction, and we present models for multi-scale face (object) segregation and recognition that can be embedded into feedforward dorsal and ventral data streams (the “what” and “where” subsystems) with feedback streams from higher areas for obtaining translation, rotation and scale invariance.