939 resultados para Copy number variations
Resumo:
Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted in immunodeficient mice. We also investigated the ability of the cell lines to form colonies and copy number alterations by array comparative genomic hybridization. Histopathological analysis showed that the invasive primary tumor from which the MACL-1 cell line was derived, was a luminal A subtype carcinoma, while the ductal carcinoma in situ (DCIS) that gave rise to the MGSO-3 cell line was a HER2 subtype tumor, both showing different proliferation levels. The cell lines and the tumor xenografts in mice preserved their high proliferative potential, but did not maintain the expression of the other markers assessed. This shift in expression may be due to the selection of an 'establishment' phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines to be potentially used for comparative research. © 2013 Spandidos Publications Ltd. All rights reserved.
Genomic Signatures Predict Poor Outcome in Undifferentiated Pleomorphic Sarcomas and Leiomyosarcomas
Resumo:
Undifferentiated high-grade pleomorphic sarcomas (UPSs) display aggressive clinical behavior and frequently develop local recurrence and distant metastasis. Because these sarcomas often share similar morphological patterns with other tumors, particularly leiomyosarcomas (LMSs), classification by exclusion is frequently used. In this study, array-based comparative genomic hybridization (array CGH) was used to analyze 20 UPS and 17 LMS samples from untreated patients. The LMS samples presented a lower frequency of genomic alterations compared with the UPS samples. The most frequently altered UPS regions involved gains at 20q13.33 and 7q22.1 and losses at 3p26.3. Gains at 8q24.3 and 19q13.12 and losses at 9p21.3 were frequently detected in the LMS samples. Of these regions, gains at 1q21.3, 11q12.2-q12.3, 16p11.2, and 19q13.12 were significantly associated with reduced overall survival times in LMS patients. A multivariate analysis revealed that gains at 1q21.3 were an independent prognostic marker of shorter survival times in LMS patients (HR = 13.76; P = 0.019). Although the copy number profiles of the UPS and LMS samples could not be distinguished using unsupervised hierarchical clustering analysis, one of the three clusters presented cases associated with poor prognostic outcome (P = 0.022). A relative copy number analysis for the ARNT, SLC27A3, and PBXIP1 genes was performed using quantitative real-time PCR in 11 LMS and 16 UPS samples. Gains at 1q21-q22 were observed in both tumor types, particularly in the UPS samples. These findings provide strong evidence for the existence of a genomic signature to predict poor outcome in a subset of UPS and LMS patients. © 2013 Silveira et al.
Resumo:
Objective: To understand developmental characteristics of urinary bladder carcinomas (UBC) by evaluating genomic alterations and p53 protein expression in primary tumors, their recurrences, and in the morphologically normal urothelium of UBC patients. Methods: Tumors and their respective recurrences, six low-grade and five high-grade cases, provided 19 samples that were submitted to laser microdissection capture followed by high resolution comparative genomic hybridization (HR-CGH). HR-CGH profiles went through two different analyses-all tumors combined or classified according to their respective histologic grades. In a supplementary analysis, 124 primary urothelial tumors, their recurrences, and normal urothelium biopsied during the period between tumor surgical resection and recurrence, were submitted to immunohistochemical analyses of the p53 protein. During the follow-up of at least 21 patients, urinary bladder washes citologically negative for neoplastic cells were submitted to fluorescence in situ hybridization (FISH) to detect copy number alterations in centromeres 7, 17, and 9p21 region. Results and Conclusions: HR-CGH indicated high frequencies (80%) of gains in 11p12 and losses in 16p12, in line with suggestions that these chromosome regions contain genes critical for urinary bladder carcinogenesis. Within a same patient, tumors and their respective recurrences showed common genomic losses and gains, which implies that the genomic profile acquired by primary tumors was relatively stable. There were exclusive genomic alterations in low and in high grade tumors. Genes mapped in these regions should be investigated on their involvement in the urinary bladder carcinogenesis. Successive tumors from same patient did not present similar levels of protein p53 expression; however, when cases were grouped according to tumor histologic grades, p53 expression was directly proportional to tumor grades. Biopsies taken during the follow-up of patients with history of previously resected UBC revealed that 5/15 patients with no histologic alterations had more than 25% of urothelial cells expressing the p53 protein, suggesting that the apparently normal urothelium was genomically unstable. No numerical alterations of the chromosomes 7, 17, and 9p21 region were found by FISH during the periods free-of-neoplasia. Our data are informative for further studies to better understand urinary bladder urothelial carcinogenesis. © 2013 Elsevier Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Estudo quantitativo da infecção por Babesia bovis em bovinos de corte de diferentes grupos genéticos
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
As neoplasias astrocitárias correspondem a cerca de (60%) dos tumores do sistema nervoso central, sendo que atingem principalmente adultos numa fase altamente produtiva da vida e com evoluções pouco satisfatórias apesar dos tratamentos disponíveis. Um melhor entendimento de sua biologia molecular se faz necessário na tentativa de compreender sua evolução e melhor planejar e tratamento, assim como na busca de novas terapias. Este trabalho teve como objetivo analisar modificações no gene TP53 com relação ao número de cópias e polimorfismos nos éxons de 4 a 11, considerados hotspots para mutações. Um total de 14 amostras de diferentes graus de malignidade foram analisadas por experimentos de FISH interfásico com sondas loco-específicas do gene TP53 e centroméricas para o cromossomo 17, e também pela técnica de SSCP para o screening de polimorfismos dos éxons 4-10. Foram comparados os resultados obtidos entre tumores de graus I e II (benignos) com aqueles de graus III e IV (malignos). Os resultados referentes às sondas loco-específicas (gene TP53 e centrômero do cromossomo 17) mostraram que a ocorrência de deleções ou amplificações, apesar de importantes estatisticamente em relação aos núcleos com número de marcações normais, não apresentou correlação com idade, sexo ou grau de malignação. Entretanto, as alterações foram encontradas com maior freqüência nos paciente portadores de astrocitomas de grau intermediário (III). A técnica de SSCP revelou polimorfismos nos éxons 5, 7 e 10, e apesar de não estarem associados à malignidade tumoral, os casos polimórficos corresponderam aos pacientes com menor sobrevida após tratamentos, sugerindo, uma associação entre mutações nesses éxons e uma maior agressividade tumoral.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)