997 resultados para Contraction function
Resumo:
1. K(V)LQT1 (KCNQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential Defects in ion channels have been demonstrated in cardiac arrhythmia. This channel is inhibited potently by the chromanol 293B, The same compound has been shown to block cAMP-dependent electrolyte secretion in rat and human colon, Therefore, it was suggested that a K+ channel similar to K(V)LQT1 is expressed in the colonic epithelium. 2, In the present paper, expression of K(V)LQT1 and its function in colonic epithelial cells is described. Reverse transcription-polymerase chain reaction analysis of rat colonic mucosa demonstrated expression of K(V)LQT1 in both crypt cells and surface epithelium. When expressed in Xenopus oocytes, K(V)LQT1 induced a typical delayed activated K+ current. 3, As demonstrated, the channel activity could be further activated by increases in intracellular cAMP. These and other data support the concept that K(V)LQT1 is forming a component of the basolateral cAMP-activated Kf conductance in the colonic epithelium.
Resumo:
The extrastriate cortex near the dorsal midline has been described as part of an 'express' pathway that provides visual input to the premotor cortex. This pathway is considered important for the integration of sensory information about the visual field periphery and the skeletomotor system, especially in relation to the control of arm movements. However, a better understanding of the functional contributions of different parts of this complex has been hampered by the lack of data on the extent and boundaries of its constituent visual areas. Recent studies in macaques have provided the first detailed view of the topographical organization of this region in Old World monkeys. Despite differences in nomenclature, a comparison of the visuotopic organization, myeloarchitecture and connections of the relevant visual areas with those previously studied in New World monkeys reveals a remarkable degree of similarity and helps to clarify the subdivision of function between different areas of the dorsomedial complex. A caudal visual area, named DM or V6, appears to be important for the detection of coherent patterns of movement across wide regions of the visual field, such as those induced during self-motion. A rostral area, named M or V6A, is more directly involved with visuomotor integration. This area receives projections both from DM/V6 and from a separate motion analysis channel, centred on the middle temporal visual area (or V5), which detects the movement of objects in extrapersonal space. These results support the suggestion, made earlier on the basis of more fragmentary evidence, that the areas rostral to the second visual area in dorsal cortex are homologous in all simian primates. Moreover, they emphasize the importance of determining the anatomical organization of the cortex as a prerequisite for elucidating the function of different cortical areas.
Resumo:
We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Background Early atherosclerosis involves the endothelium of many arteries. Information about peripheral arterial anatomy and function derived from vascular imaging studies such as brachial artery reactivity (BAR) and carotid intima media thickness (IMT) may be pertinent to the coronary circulation. The prevention and early treatment of atherosclerosis is gaining more attention, and these tests might be used as indications or perhaps guides to the effectiveness of therapy, but their application in clinical practice has been limited. This review seeks to define the anatomy and pathophysiology underlying these investigations, their methodology, the significance of their Findings, and the issues that must be resolved before their application. Methods The literature on BAR and IMT is extensively reviewed, especially in relation to clinical use. Results Abnormal flow-mediated dilation is present in atherosclerotic vessels, is associated with cardiovascular risk factors, and may be a marker of preclinical disease. Treatment of known atherosclerotic risk Factors has been shown to improve flow-mediated dilation, and some data suggest that vascular responsiveness is related to outcome. Carotid IMT is associated with cardiovascular risk factors, and increased levels can predict myocardial infarction and stroke. Aggressive risk factor management can decrease IMT. Conclusions BAR and IMT ate functional and structural markers of the atherosclerotic process. The clinical use of BAR has been limited by varying reproducibility and the influence by exogenous factors, but IMT exhibits less variability. A desirable next step in the development of BAR and IMT as useful clinical tools would be to show an association of improvement in response to treatment with improvement in prognosis.
Resumo:
The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
There is overwhelming evidence for the existence of substantial genetic influences on individual differences in general and specific cognitive abilities, especially in adults. The actual localization and identification of genes underlying variation in cognitive abilities and intelligence has only just started, however. Successes are currently limited to neurological mutations with rather severe cognitive effects. The current approaches to trace genes responsible for variation in the normal ranges of cognitive ability consist of large scale linkage and association studies. These are hampered by the usual problems of low statistical power to detect quantitative trait loci (QTLs) of small effect. One strategy to boost the power of genomic searches is to employ endophenotypes of cognition derived from the booming field of cognitive neuroscience This special issue of Behavior Genetics reports on one of the first genome-wide association studies for general IQ. A second paper summarizes candidate genes for cognition, based on animal studies. A series of papers then introduces two additional levels of analysis in the ldquoblack boxrdquo between genes and cognitive ability: (1) behavioral measures of information-processing speed (inspection time, reaction time, rapid naming) and working memory capacity (performance on on single or dual tasks of verbal and spatio-visual working memory), and (2) electrophyiosological derived measures of brain function (e.g., event-related potentials). The obvious way to assess the reliability and validity of these endophenotypes and their usefulness in the search for cognitive ability genes is through the examination of their genetic architecture in twin family studies. Papers in this special issue show that much of the association between intelligence and speed-of-information processing/brain function is due to a common gene or set of genes, and thereby demonstrate the usefulness of considering these measures in gene-hunting studies for IQ.
Resumo:
We compared changes in muscle fibre composition and muscle strength indices following a 10 week isokinetic resistance training programme consisting of fast (3.14 rad(.)s(-1)) or slow (0.52 rad(.)s(-1)) velocity eccentric muscle contractions. A group of 20 non-resistance trained subjects were assigned to a FAST (n = 7), SLOW (n = 6) or non-training CONTROL (n = 7) group. A unilateral training protocol targeted the elbow flexor muscle group and consisted of 24 maximal eccentric isokinetic contractions (four sets of six repetitions) performed three times a week for 10 weeks. Muscle biopsy samples were obtained from the belly of the biceps brachii. Isometric torque and concentric and eccentric torque at 0.52 and 3.14 rad(.)s(-1) were examined at 0, 5 and 10 weeks. After 10 weeks, the FAST group demonstrated significant [mean (SEM)] increases in eccentric [29.6 (6.4)%] and concentric torque [27.4 (7.3) %] at 3.14 rad(.)s(-1), isometric torque [21.3 (4.3)%] and eccentric torque [25.2 (7.2) %] at 0.52 rad(.)s(-1). The percentage of type I fibres in the FAST group decreased from [53.8 (6.6)% to 39.1 (4.4)%] while type lib fibre percentage increased from [5.8 (1.9)% to 12.9 (3.3)%; P < 0.05]. In contrast. the SLOW group did not experience significant changes in muscle fibre type or muscle torque. We conclude that neuromuscular adaptations to eccentric training stimuli may be influenced by differences in the ability to cope with chronic exposure to relatively fast and slow eccentric contraction velocities. Possible mechanisms include greater cumulative damage to contractile tissues or stress induced by slow eccentric muscle contractions.
Cavity QED analog of the harmonic-oscillator probability distribution function and quantum collapses
Resumo:
We establish a connection between the simple harmonic oscillator and a two-level atom interacting with resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-oscillator's probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by coupling the system to a third level. We find that there are two different regions of the atomic dynamics depending on the ratio of the: Rabi frequency Omega (c) of the cavity field to that of the Rabi frequency Omega of the driving field. For Omega (c)
Resumo:
The intracellular trafficking and subsequent incorporation of Gag-Pol into human immunodeficiency virus type 1 (HIV-1) remains poorly defined. Gag-Pol is encoded by the same mRNA as Gag and is generated by ribosomal frameshifting. The multimerization of Gag and Gag-Pol is an essential step in the formation of infectious viral particles. In this study, we examined whether the interaction between Gag and Gag-Pol is initiated during protein translation in order to facilitate the trafficking and subsequent packaging of Gag-Pol into the virion. A conditional cotransfection system was developed in which virion formation required the coexpression of two HIV-1-based plasmids, one that produces both Gag and Gag-Pol and one that only produces Gag-Pol. The Gag-Pol proteins were either immunotagged with a His epitope or functionally tagged with a mutation (K65R) in reverse transcriptase that is associated with drug resistance. Gag-Pol packaging was assessed to determine whether the Gag-Pol incorporated into the virion was preferentially packaged from the plasmid that expressed both Gag and Gag-Pol or whether it could be packaged from either plasmid. Our data show that translation of Gag and Gag-Pol from the same mRNA is not critical for virion packaging of the Gag-Pol polyprotein or for viral function.
Adult mouse intrinsic laryngeal muscles express high levels of the myogenic regulatory factor, MYF-5
Resumo:
The intrinsic laryngeal muscles display unique structural and functional characteristics that distinguish them from the skeletal muscle of the trunk and limbs. These features include relatively small muscle fibers, super-fast contraction speed, and fatigue resistance. The molecular basis of tissue-specific functions and other characteristics is differential gene expression. Accordingly, we have investigated the molecular basis of the functional specialization of the intrinsic laryngeal muscles by examining the expression of two key genes in the larynx, known to be important for skeletal muscle development and function: (a) the muscle regulatory factor, Myf-5, and (b) the superfast-contracting myosin heavy chain (EO-MyHC). We have found that the adult thyroarytenoid muscles express much higher levels of both Myf-5 and EO-MyHC messenger ribonucleic acid (mRNA), compared to lower hindlimb skeletal muscle where Myf-5 mRNA levels are very low and EO-MyHC is not detectable. These findings suggest that the unique functional characteristics of the intrinsic laryngeal muscles may be based in laryngeal muscle-specific gene expression directed by a unique combination of muscle regulatory factors. Such laryngeal muscle-specific genes may allow the future development of new treatments for laryngeal muscle dysfunction.
Resumo:
The study to be presented is the first to use a new physiological device, the electromagnetic articulograph, to assess articulatory dysfunction in children with acquired brain injury. Two children with dysarthria subsequent to acquired brain injury participated in the study. One child, a female aged 12 years 9 months exhibited a mild-moderate ataxic dysarthria following traumatic head injury while the other, a male aged 13 years 10 months, demonstrated a moderate-severe flaccid-ataxic dysarthria also following traumatic head injury. The speed and accuracy of their tongue movements was assessed using the Carstens AG100 electromagnetic articulograph. Movement trajectories together with a range of quantitative kinematic parameters were estimated during performance of ten repetitions of the lingual consonants /t, s, k/ and consonant cluster /kl/ in the word initial position of single syllable words. A group of ten non-neurologically impaired children served as controls. Examination of the kinematic parameters, including movement trajectories, velocity, acceleration, deceleration, distance travelled and duration of movement, revealed differences in the speed and accuracy of the tongue movements in both children with acquired brain injury compared to those produced by the non-neurologically impaired controls. The results are discussed in relation to contemporary theories of the effects of acquired brain injury on neuromuscular function. The implications of the findings for the treatment of articulatory dysfunction in children with motor speech disorders associated with acquired brain injury are highlighted.