930 resultados para Continuum removal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double ionization of helium by electron impact for 106 eV incident energy was studied in a kinematically complete experiment by using a reaction microscope. The pattern of the angular correlation of the three emitted electrons was analyzed by selecting different values of the recoil ion longitudinal momentum. The Wannier predicted geometry appears when the recoil ion carries the full initial projectile momentum. It was found that at this low impact energy, the outgoing electrons still remember the initial-state collision information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron-rich nucleus He-8 is selected by RIBLL from the breakup of 50MeV/u C-13 on be target at HIRFL. The 2n-removal and 4n-removal cross section of He-8 was measured by using the transmission method. The point that He-4 is He-8 core can be reduced from the experiment data via the Ogawa's theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.