957 resultados para Continuity equation
Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the $p$-version
Resumo:
Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator $-\Delta-\omega^2$, $\omega>0$. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of $p$-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121–136], and plane wave approximation theory.
Resumo:
We revisit the boundedness of Hankel and Toeplitz operators acting on the Hardy space H 1 and give a new proof of the old result stating that the Hankel operator H a is bounded if and only if a has bounded logarithmic mean oscillation. We also establish a sufficient and necessary condition for H a to be compact on H 1. The Fredholm properties of Toeplitz operators on H 1 are studied for symbols in a Banach algebra similar to C + H ∞ under mild additional conditions caused by the differences in the boundedness of Toeplitz operators acting on H 1 and H 2.
Resumo:
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.
Resumo:
La rareté des miniatures consacrées à l'histoire amoureuse de Merlin et Viviane, dont le développement est à la fois épisodique et structuré par le recours au procédé de l'entrelacement, souligne son caractère marginal au sein de la narration. Les artistes et concepteurs de ces ouvrages manifestent une certaine réticence à l'égard d'aventures qui peuvent affecter l'autorité morale de Merlin, même si elles sont étroitement liées à la disparition du personnage et à la clôture du récit.
Resumo:
Background: The relationship between continuity of care and user characteristics or outcomes has rarely been explored. The ECHO study operationalized and tested a multi-axial definition of continuity of care, producing a seven-factor model used here. Aims: To assess the relationship between user characteristics and established components of continuity of care, and the impact of continuity on clinical and social functioning. Methods: The sample comprised 180 community mental health team users with psychotic disorders who were interviewed at three annual time-points, to assess their experiences of continuity of care and clinical and social functioning. Scores on seven continuity factors were tested for association with user-level variables. Results: Improvement in quality of life was associated with better Experience & Relationship continuity scores (better user-rated continuity and therapeutic relationship) and with lower Meeting Needs continuity factor scores. Higher Meeting Needs scores were associated with a decrease in symptoms. Conclusion: Continuity is a dynamic process, influenced significantly by care structures and organizational change.
Resumo:
Introduction: Continuity of care has been demonstrated to be important for service users and carer groups have voiced major concerns over disruptions of care. We aimed to assess the experienced continuity of care in carers of patients with both psychotic and non-psychotic disorders and explore its association with carer characteristics and psychological well-being. Methods: Friends and relatives caring for two groups of service users in the care of community mental health teams (CMHTs), 69 with psychotic and 38 with non-psychotic disorders, were assessed annually at three and two time points, respectively. CONTINUES, a measure specifically designed to assess continuity of care for carers themselves, was utilized along with assessments of psychological well-being and caregiving. Results: One hundred and seven carers participated. They reported moderately low continuity of care. Only 22 had had a carer’s assessment and just under a third recorded psychological distress on the GHQ. For those caring for people with psychotic disorders, reported continuity was higher if the carer was male, employed, lived with the user and had had a carer’s assessment; for those caring for people with non-psychotic disorders, it was higher if the carer was from the service user’s immediate family, lived with them and had had a carer’s assessment. Conclusion: The vast majority of the carers had not had a carer’s assessment provided by the CMHT despite this being a clear national priority and being an intervention with obvious potential to increase carers’ reported low levels of continuity of care. Improving continuity of contact with carers may have an important part to play in the overall improvement of care in this patient group and deserves greater attention.
Resumo:
The BFKL equation and the kT-factorization theorem are used to obtain predictions for F2 in the small Bjo/rken-x region over a wide range of Q2. The dependence on the parameters, especially on those concerning the infrared region, is discussed. After a background fit to recent experimental data obtained at DESY HERA and at Fermilab (E665 experiment) we find that the predicted, almost Q2 independent BFKL slope λ≳0.5 appears to be too steep at lower Q2 values. Thus there seems to be a chance that future HERA data can distinguish between pure BFKL and conventional field theoretic renormalization group approaches. © 1995 The American Physical Society.
Resumo:
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
We prove unique existence of solution for the impedance (or third) boundary value problem for the Helmholtz equation in a half-plane with arbitrary L∞ boundary data. This problem is of interest as a model of outdoor sound propagation over inhomogeneous flat terrain and as a model of rough surface scattering. To formulate the problem and prove uniqueness of solution we introduce a novel radiation condition, a generalization of that used in plane wave scattering by one-dimensional diffraction gratings. To prove existence of solution and a limiting absorption principle we first reformulate the problem as an equivalent second kind boundary integral equation to which we apply a form of Fredholm alternative, utilizing recent results on the solvability of integral equations on the real line in [5].
Resumo:
We consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane, this problem arising in electromagnetic scattering by one-dimensional rough, perfectly conducting surfaces. We propose a new boundary integral equation formulation for this problem, utilizing the Green's function for an impedance half-plane in place of the standard fundamental solution. We show, at least for surfaces not differing too much from the flat boundary, that the integral equation is uniquely solvable in the space of bounded and continuous functions, and hence that, for a variety of incident fields including an incident plane wave, the boundary value problem for the scattered field has a unique solution satisfying the limiting absorption principle. Finally, a result of continuous dependence of the solution on the boundary shape is obtained.
Resumo:
We consider the Dirichlet boundary-value problem for the Helmholtz equation, Au + x2u = 0, with Imx > 0. in an hrbitrary bounded or unbounded open set C c W. Assuming continuity of the solution up to the boundary and a bound on growth a infinity, that lu(x)l < Cexp (Slxl), for some C > 0 and S~< Imx, we prove that the homogeneous problem has only the trivial salution. With this resnlt we prove uniqueness results for direct and inverse problems of scattering by a bounded or infinite obstacle.
Resumo:
The low wave number range of decaying turbulence governed by the Charney-Hasegawa-Mima (CHM) equation is examined theoretically and by direct numerical simulation. Here, the low wave number range is defined as values of the wave number k below the wave number kE corresponding to the peak of the energy spectrum, or alternatively the centroid wave number of the energy spectrum. The energy spectrum in the low wave number range in the infrared regime (k →0) is theoretically derived to be E(k) ∼k5, using a quasinormal Markovianized model of the CHM equation. This result is verified by direct numerical simulation of the CHM equation. The wave number triads (k,p,q) responsible for the formation of the low wave number spectrum are also examined. It is found that the energy flux Π(k) for k< kE can be entirely expressed by Π(-)(k), which is the total net input of energy to wave numbers