929 resultados para Contamination for lead
Resumo:
The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.
Resumo:
Isotope shifts of Kα1 x-ray transitions were measured for the Neodymium isotopes Nd 142, 143, 144, 145, 146, 148 and 150, the Samarium isotopes Sm 147, 148, 149, 150, 152 and 154, the Gadolinium isotopes Gd 154, 155, 156, 157, 158 and 160, the Dysprosium isotopes Dy 162 and 164, the Erbium isotopes Er 166, 168 and 170, the Hafnium isotopes Hf 178 and 180 and the Lead isotopes Pb 204, 206, 207 and 208. A curved crystal Cauchois spectrometer was used. The analysis of the measurement furnished the variation of the mean square charge radius of the nucleus, δ˂r2˃, for 23 isotope pairs. The experimental results were compared with theoretical values from nuclear models. Combining the x-ray shifts and the optical shifts in Nd and Sm yielded the optical mass shifts. An anomaly was observed in the odd-even shifts when the optical and the x-ray shifts were plotted against each other.
Resumo:
A spin-coated film of lead tetra-(tert-butyl)-5,10,15,20-tetraazaporphyrin complex (PbTAP(t-Bu)(4)) was obtained and characterized by IR spectra, absorption spectra and atomic force microscopy. The response and recovery characteristics of the film to NH3, NO2 and C2H5OH vapor were investigated at room temperature. In addition, the reversibility and stability of the film to NH3 were also studied. The results indicate that the PbTAP(t-Bu)(4) derivative can be exploited as an NH3 sensor at room temperature. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Infrared-to-visible upconversion fluorescence of Er(3+)/Yb(3+) co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation. Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb(3+)-Er(3+) concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H_(11/2)-->4I_(15/2), 4S_(3/2)-->4I_(15/2), and 4F_(9/2)-->4I_(15/2), respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I_(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er(3+)/Yb(3+) co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.
Resumo:
Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.
Resumo:
Yb3+Er3+-codoped chloride-modified germanate-bismuth-lead glasses have been synthesized by the conventional melting and quenching method. Structural and thermal stability properties have been obtained on the basis of the Raman spectra and differential thermal analysis, which indicate that the PbCl2 addition has an important influence on the phonon density of states, maximum phonon energy, and thermal stability of host glasses. The Judd-Ofelt intensity parameters and quantum efficiencies were calculated on the basis of the Judd-Ofelt theory and lifetime measurements. For the 1.53 mu m emission band, the full widths at the half-maximum increase and peak wavelengths are blueshifted with increasing PbCl2 content. Moreover, the effect of the PbCl2 addition on the phonon density of states, OH- content, and upconversion luminescence has been discussed and evaluated. Our results reveal that, with increasing PbCl2 content, the decrease of phonon density and OH- content contributes more to the enhanced upconversion emissions than that of maximum phonon energy. (c) 2005 Optical Society of America
Resumo:
The effects of F- ions in a germanium-lead-tellurite glass system oil the spectral and potential laser properties of the Yb3+ are investigated. The absorption spectra, lifetimes, the emission cross-sections and the minimum pump intensities of the glass system with and without F- ions have been measured and calculated. The results show that the fluorescence lifetime and the minimum pump intensity of Yb3+ ions increase evidently, which indicates that germanium lead-oxyfluoride tellurite glass is a promising laser host matrix for high power generation. FT-IR spectra were used to analyse the effect of F- ions on OH- groups in this glass system. Analysis demonstrates that addition of fluoride removes the OH- groups and results in improvement of fluorescence lifetime of Yb3+.
Resumo:
Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Er3+/Yb3+-codoped potassium-barium-strontium-lead-bismuth glasses for developing potential upconversion lasers have been fabricated and characterized. Based on the results of energy transfer efficiency, the optimal Yb3+/Er3+ concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 run, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
New lithium-barium-lead-bismuth glasses with low OH- concentration have been obtained. The role of the different components in the glass formation has been explored from the thermal, density, and refractive index measurements. The T-g, T-x, and T-x-T-g values of these glasses are in the range of 358-400, 453-575, and 87-197 degreesC, respectively. The densities (p) and refractive indices of these glasses are mainly affected by Bi2O3 and PbO contents. A wide transmitting window from visible to infrared (IR) regions for some compositions of these glasses has been observed, which makes them appealing candidates for different optical applications such as upconverting phosphors, new laser materials, optical waveguides, and crystal-free fibre drawing. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We study the structural and infrared-to-visible upconversion fluorescence properties of Er3(+)/Yb3+-codoped lead-free germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of Raman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> (IT15/2)-I-4 -> S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.
Resumo:
Structural and infrared-to-visible upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride lead-germanium-bismuth glass have been studied. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence owing to lower phonon energy. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2)-->I-4(15/2,) I-4(3/2)-->I-4(15/2), and F-4(9/2)-->I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Structural and infrared-to-visible upconversion fluorescence properties in ytterbium-sensitized erbrium-doped novel lead-free germanium bismuth-lanthanum glass have been studied. The structure of lead-free germanium-bismuth-lanthanum glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. This novel lead-free germanium-bismuth-lanthanum glass with low maximum phonon energy (similar to 751 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Published by Elsevier B.V.
Resumo:
Ytterbium-sensitized erbium-doped oxide-halide tellurite and germanate-niobic-lead glasses have been synthesized by conventional melting method. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature in these glasses. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. Tellurite glass showed a weaker up-conversion emission than germanate-niobic-lead glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate-mobic-lead glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. Our results reveal that the phonon density and the maximum phonon energy of host glasses are both important factors in determining the up-conversion efficiency. (c) 2005 Elsevier B.V. All rights reserved.