960 resultados para Container gardening
Resumo:
A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.
Resumo:
Koneellinen annosjakelu on kasvava lääkehuollon osa-alue, jossa lääkkeet pakataan koneellisesti pieniin annoskertakohtaisiin pusseihin kahden viikon erissä. Aikaisemmin lääkevalmisteiden soveltuvuutta koneelliseen annosjakeluun ei ole systemaattisesti tutkittu. Tutkimus tehtiin yhteistyössä Espoonlahden apteekin annosjakeluyksikön kanssa ja sen tavoitteena oli määrittää annosjakeluprosessin kannalta optimaaliset ominaisuudet annosjaeltavalle tabletille rikkoutumisten ja siirtymien vähentämiseksi. Rikkoutuminen on lääkevalmisteen murentumista, puolittumista tai muuta rikkoutumista annosjakelun aikana. Siirtymä on lääkevalmisteen jakelu väärään annospussiin. Prosentuaalisesti rikkoutumisia ja siirtymiä on jakelumäärästä hyvin vähän, mutta määrällisesti paljon ja koko ajan enemmän koneellisen annosjakelun yleistyessä. Rikkoutumiset ja siirtymät aiheuttavat paljon lisätyötä pussien korjaamisen takia, joten niiden määrää on pyrittävä vähentämään. Lisäksi tavoitteena oli selvittää lääkkeiden valmistajilta kysyttävissä olevat asiat lääkevalmisteiden ominaisuuksista ja säilyvyydestä, jotta voitaisiin päätellä valmisteen soveltuvuus koneelliseen annosjakeluun kirjallisen tiedon perusteella. Tutkimuksen tulosten perusteella rikkoutumisten ja siirtymien vähentämiseksi optimaalinen tablettivalmiste annosjakeluun on pienehkö tai keskisuuri, päällystetty, luja ja jakouurteeton ja optimaalinen ilman suhteellinen kosteustaso annosjakeluyksikön tuotantotiloissa olisi noin 30 – 40 %. Lääkkeiden valmistajilta kysyttäviä seikkoja ovat koon, päällysteen, murtolujuuden ja jakouurteen lisäksi valmisteen säilyvyys alkuperäispakkauksen ulkopuolella sekä valmisteen valo-, lämpö- ja kosteusherkkyys. Rikkoutumisten ja siirtymien lisäksi tutkittiin myös kosteusherkän asetyylisalisyylihappovalmisteen (Disperin 100 mg) säilyvyyttä 25 °C ja 60 % RH olosuhteissa, koska tuotantotilojen ilman kosteustasoa ei ole säädelty. Säilyvyystutkimuksen kesto oli neljä viikkoa. Se on riittävä, koska se on enimmäisaika, jonka tabletit ovat annosjakeluprosessin yhteydessä pois alkuperäispakkauksestaan ennen käyttöä. Tabletteja säilytettiin avoimessa alkuperäispakkauksessa (purkki), suljetussa alkuperäispakkauksessa, annosjakelukoneen kasetissa ja kahdessa erilaisessa annospussissa (uusi ja käytössä oleva materiaali). Tulosten mukaan annosjakelukoneen kasetti suojaa kosteudelta yhtä huonosti kuin avoin purkki. Uusi pussimateriaali sen sijaan suojaa kosteudelta paremmin kuin tällä hetkellä käytössä oleva materiaali. Raman -spektroskopiamittausten perusteella asetyylisalisyylihappotableteissa ei ehdi neljän viikon seurannan aikana tapahtua asetyylisalisyylihapon hajoamista salisyylihapoksi. Kosteus heikentää tablettien murtolujuutta, mikä saattaa aiheuttaa enemmän rikkoutumisia. Kosteustaso olisi hyvä olla säädettävissä vakioksi tuotantotiloissa tai purkaa tabletit kasetteihin mahdollisimman lähellä jakelua rikkoutumisten ehkäisemiseksi, etenkin ilman kosteustason ollessa korkea. Lisäksi tutkittiin lääkevalmisteen lämpöherkkyyttä koska annosjakelukoneen saumauslaite altistaa annospussit noin 75 °C lämmölle, jos annosjakelukone pysäytetään kesken työn. Tutkimus tehtiin XRPD:llä, jolla voidaan säätää näytteen lämpötilaa. Lämpöherkkyystutkimusten perusteella 75 °C lämpö ei ehdi tunnin aikana aiheuttaa muutoksia karbamatsepiinitabletissa (Neurotol 200 mg). Tuloksista selvisi, että tutkitun valmisteen sisältämä karbamatsepiini ei kuitenkaan ole lämpöherkin muoto, joten muita lämpöherkkiä lääkevalmisteita tulisi tutkia lisätiedon saamiseksi lämmön vaikutuksista.
Resumo:
The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.
Resumo:
This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed Using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interlace. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable Of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely Using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. I-lie capability of the model to capture the critical crack regions, loads and deflections for various types Of shear failures ill prestressed concrete beam has been illustrated.
Resumo:
An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.
Resumo:
The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.
Resumo:
At the the heart of this study can be seen the dual concern of how the nation is represented as a categorical entity and how this is put to use in everyday social interactions.This can be seen as a reaction to the general approach to categorisation and identity functions that tend to be reified and essentialized within the social sciences. The empirical focus of this study is the Isle of Man, a crown dependency situated geographically central within the British Isles while remaining political outside the United Kingdom. The choice of this site was chosen explicitly as ‘notions of nation’ expressed on the island can be seen as being contested and ephemerally unstable. To get at these ‘notions of nation’ is was necessary to choose specific theoretical tools that were able to capture the wider cultural and representational domain while being capable of addressing the nuanced and functional aspects of interaction. As such, the main theoretical perspective used within this study was that of critical discursive psychology which incorporates the specific theoretical tools interpretative repertoires, ideological dilemmas and subject positions. To supplement these tools, a discursive approach to place was taken in tandem to address the form and function of place attached to nationhood. Two methods of data collection were utilized, that of computer mediated communication and acquaintance interviews. From the data a number of interpretative repertoires were proposed, namely being, essential rights, economic worth, heritage claims, conflict orientation, people-as-nation and place-as-nation. Attached to such interpretative repertoires were the ideological dilemmas region vs. country, people vs. place and individualism vs. collectivism. The subject positions found are much more difficult to condense, but the most significant ones were gender, age and parentage. The final focus of the study, that of place, was shown to be more than just an unreflected on ‘container’ of people but was significant in terms of the rhetorical construction of such places for how people saw themselves and the discursive function of the particular interaction. As such, certain forms of place construction included size, community, temporal, economic, safety, political and recognition. A number of conclusions were drawn from the above which included, that when looking at nation categories we should take into account the specific meanings that people attach to such concepts and to be aware of the particular uses they are put to in interaction. Also, that it is impossible to separate concepts neatly, but it is necessary to be aware of the intersection where concepts cross, and clash, when looking at nationhood.
Resumo:
Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.
Resumo:
The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.
Resumo:
Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.
Resumo:
Application of piezoceramic materials in actuation and sensing of vibration is of current interest. Potential and more popular applications of piezoceramics are probably in the field of active vibration control. However, the objective of this work is to investigate the effect of shunted piezoceramics as passive vibration control devices when bonded to a host structure. Resistive shunting of a piezoceramic bonded to a cantilevered duralumin beam has been investigated. The piezoceramic is connected in parallel to an electrical network comprising of resistors and inductors. The piezoceramic is a capacitor that stores and discharges electrical energy that is transformed from the mechanical motion of the structure to which it is bonded. A resistor across the piezoceramic would be termed as a resistively shunted piezoceramic. Similarly, an inductor across the piezoceramic is termed as a resonantly shunted piezoceramic. In this study, the effect of resistive shunting on the nature of damping enhancement to the host structure has been investigated. Analytical studies are presented along with experimental results.
Resumo:
Closed form solutions for equilibrium and flexibility matrices of the Mindlin-Reissner theory based eight-node rectangular plate bending element (MRP8) using integrated Force Method (IFM) are presented in this paper. Though these closed form solutions of equilibrium and flexibility matrices are applicable to plate bending problems with square/rectangular boundaries, they reduce the computational time significantly and give more exact solutions. Presented closed form solutions are validated by solving large number of standard square/rectangular plate bending benchmark problems for deflections and moments and the results are compared with those of similar displacement-based eight-node quadrilateral plate bending elements available in the literature. The results are also compared with the exact solutions.
Resumo:
The storage capacity of an activated carbon bed is studied using a 2D transport model with constant inlet flow conditions. The predicted filling times and variation in bed pressure and temperature are in good agreement with experimental observations obtained using a 1.82 L prototype ANG storage cylinder. Storage efficiencies based on the maximum achievable V/V (volume of gas/volume of container) and filling times are used to quantify the performance of the charging process. For the high permeability beds used in the experiments, storage efficiencies are controlled by the rate of heat removal. Filling times, defined as the time at which the bed pressure reaches 3.5 MPa, range from 120 to 3.4 min for inlet flow rates of 1.0 L min(-1) and 30.0 L min(-1), respectively. The corresponding storage efficiencies, eta(s), vary from 90% to 76%, respectively. Simulations with L/D ratios ranging from 0.35 to 7.8 indicate that the storage efficiencies can be improved with an increase in the LID ratios and/or with water cooled convection. Thus for an inlet flow rate of 30.0 L min(-1), an eta(s) value of 90% can be obtained with water cooling for an L/D ratio of 7.8 and a filling time of a few minutes. In the absence of water cooling the eta(s) value reduces to 83% at the same L/D ratio. Our study suggests that with an appropriate choice of cylinder dimensions, solutions based on convective cooling during adsorptive storage are possible with some compromise in the storage capacity.
Resumo:
The intense interest in social Hymenoptera, on account of their elaborate sociality and the paradox of altruism, has often suffered from considerable gender imbalance. This is partly due to the fact that worker behaviour and altruism are restricted to the females and partly because males often live off the nest. Yet, understanding the males, especially in the context of mating biology is essential even for understanding the evolution of sociality. Mating patterns have a direct bearing on the levels of intra-colony genetic relatedness, which in turn, along with the associated costs and benefits of worker behaviour, are central to our understanding of the evolution of sociality. Although mating takes place away from the nest in natural colonies of the primitively eusocial wasp Ropalidia marginata, mating can be observed in the laboratory if a male and a female are placed in a transparent, aerated plastic container, and both wasps are in the range of 5-20 days of age. Here, we use this setup and show that males, but not females, mate serially with multiple partners. The multiple mating behaviour of the males is not surprising because in nature males have to mate with a number of females, only a few of whom will go on to lay eggs. The reluctance of R. marginata females to mate with multiple partners is consistent with the expectation of monogamy in primitively eusocial species with totipotent females, although the apparent discrepancy with a previous work with allozyme markers in natural colonies suggesting that females may sometimes mate with two or three different males remains to be resolved.
Resumo:
This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations theta(x) and theta(y) are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.