853 resultados para Congestive Heart-failure
Resumo:
Resting heart rate is a promising modifiable cardiovascular risk marker in older adults, but the mechanisms linking heart rate to cardiovascular disease are not fully understood. We aimed to assess the association between resting heart rate and incident heart failure (HF) and cardiovascular mortality, and to examine whether these associations might be attributable to systemic inflammation and endothelial dysfunction.
Resumo:
American College of Cardiology/American Heart Association guidelines for the diagnosis and management of heart failure recommend investigating exacerbating conditions such as thyroid dysfunction, but without specifying the impact of different thyroid-stimulation hormone (TSH) levels. Limited prospective data exist on the association between subclinical thyroid dysfunction and heart failure events.
Resumo:
Subclinical thyroid dysfunction is common in older people. However, its clinical importance is uncertain.
Resumo:
Background: In most patients with chronic heart failure (CHF), endurance training improves exercise capacity. However, some patients do not respond favourably. The purpose of this study was to explore the reasons of non-response and to determine their predictive value.Methods: We studied a cohort of 120 consecutive CHF patients with sinus rhythm (mean age 57 ± 12 years, ejection fraction 29.3 ± 9.9%, peak VO2 17.3 ± 5.1 ml/min/kg), participating in a 3-month outpatient cardiac rehabilitation programme. Responders were defined as subjects who improved peak VO2 by more than 5%, work load by more than 10%, or VE/VCO2 slope by more than 5%. Subjects who did not fulfil at least one of the above criteria were characterized as non-responders. Multivariate regression analyses were performed to identify parameters that were predictive for a response. Receiver operating characteristic (ROC) analyses were performed for predictive parameters to identify thresholds for response or non-response.Results: Multivariate regression analyses revealed heart rate (HR) reserve, HR recovery at 1 min, and peak HR as significant predictors for a positive training response. ROC curves revealed the optimal thresholds separating responders from non-responders at less than 30 bpm for HR reserve, less than 6 bpm for HR recovery and less than 101 bpm for peak HR.Conclusions: The presence of impaired chronotropic competence is a major predictor of poor training response in CHF patients with sinus rhythm.
Resumo:
Exertional oscillatory ventilation (EOV) is an ominous prognostic sign in chronic heart failure (CHF), but little is known about the success of specific therapeutic interventions. Our aim was to study the impact of an exercise training on exercise capacity and cardiopulmonary adaptation in stable CHF patients with left ventricular systolic dysfunction and EOV. 96 stable CHF patients with EOV were included in a retrospective analysis (52 training versus 44 controls). EOV was defined as follows: 1) three or more oscillatory fluctuations in minute ventilation (V'(E)) during exercise; 2) regular oscillations; and 3) minimal average ventilation amplitude ≥5 L. EOV disappeared in 37 (71.2%) out of 52 patients after training, but only in one (2.3%) out of 44 without training (p<0.001). The decrease of EOV amplitude correlated with changes in end-tidal carbon dioxide tension (r= -0.60, p<0.001) at the respiratory compensation point and V'(E)/carbon dioxide production (V'(CO(2))) slope (r=0.50, p<0.001). Training significantly improved resting values of respiratory frequency (f(R)), V'(E), tidal volume (V(T)) and V'(E)/V'(CO(2)) ratio. During exercise, V'(E) and V(T) reached significantly higher values at the peak, while f(R) and V'(E)/V'(CO(2)) ratio were significantly lower at submaximal exercise. No change was noted in the control group. Exercise training leads to a significant decrease of EOV and improves ventilatory efficiency in patients with stable CHF.
Resumo:
Microscopic pulmonary tumor embolism (MPTE) is an uncommon cause of dyspnea in patients with cancer and one of the most difficult to diagnose. MPTE is a syndrome that is pathologically characterized by the occlusion of small pulmonary arteries and arterioles by aggregates of tumor cells. Because the clinical picture resembles that of thromboembolic disease, it is rarely recognized before death. The most common clinical symptom is subacute progressive dyspnea over weeks to months. We recently observed a case of MPTE of exceptional interest as the patient was under aggressive anticoagulant treatment and developed fulminant pulmonary hypertension with fatal right heart failure.
Resumo:
Background Whole-body water immersion leads to a significant shift of blood from the periphery into the intra-thoracic circulation, followed by an increase in central venous pressure and heart volume. In patients with severely reduced left ventricular function, this hydrostatically in-duced volume shift might overstrain the cardiovascular adaptive mechanisms and lead to cardiac decompensation. The aim of this study is to assess the hemodynamic response to water immer-sion, gymnastics and swimming in patients with heart failure (CHF). Methods We examined 10 patients with compensated CHF (62.9 +/- 6.3 years, EF 31.5 +/- 4.1%, peak VO2 19.4 +/- 2.8 ml/kg/min.), 10 patients with coronary artery disease (CAD) but preserved left ventricular function (57.2 +/- 5.6 years, EF 63.9 +/- 5.5%, peak VO2 28.0 +/- 6.3 ml/kg/min.) and 10 healthy subjects (32.8 +/- 7.2 years, peak VO2 45.6 +/- 6.0 ml/kg/min.). Hemodynamic response to thermo-neutral (32 degrees C) water immersion and exercise was measured using a non-invasive foreign gas rebreathing method during stepwise water immersion, water gymnastics and swimming. Results Water immersion up to the chest increased cardiac index by 19% in healthy subjects, by 21% in CAD patients and 16% in CHF patients. While some CHF patients showed a decrease of stroke volume during immersion, all subjects were able to increase cardiac index (by 87% in healthy subjects, 77% in CAD patients and 53% in CHF patients). Oxygen uptake during swim-ming was 9.7 +/- 3.3 ml/kg/min. in CHF patients, 12.4 +/- 3.5 ml/kg/min. in CAD patients and 13.9 +/- 4.0 ml/kg/min. in healthy subjects. Conclusions Patients with severely reduced left ventricular function but stable clinical conditions and a minimal peak VO2 of at least 15 ml/kg/min. during a symptom-limited exercise stress test tolerate water immersion and swimming in thermo-neutral water well. Although cardiac in-dex and oxygen uptake are lower compared with CAD patients with preserved left ventricular function and healthy controls, these patients are able to increase cardiac index adequately during water immersion and swimming.
Resumo:
OBJECTIVE(S): Even though the mechanism is not clearly understood, direct intramyocardial cell transplantation has demonstrated potential to treat patients with severe heart failure. We previously reported on the bioengineering of myoblast-based constructs. We investigate here the functional outcome of infarcted hearts treated by implantation of myoblast-seeded scaffolds. METHODS: Adult Lewis rats with echocardiography-confirmed postinfarction reduced ejection fraction (48.3% +/- 1.1%) were randomized to (1) implantation of myoblast-seeded polyurethane patches at the site of infarction (PU-MyoB, n = 11), (2) implantation of nonseeded polyurethane patches (PU, n = 11), (3) sham operation (Sham, n = 12), and (4) direct intramyocardial myoblast injection (MyoB, n = 11). Four weeks later, the functional assessment by echocardiography was repeated, and we additionally performed left ventricular catheterization plus histologic studies. RESULTS: The ejection fraction significantly decreased in the PU (39.1% +/- 2.3%; P = .02) and Sham (39.9% +/- 3.5%; P = .04) groups, whereas it remained stable in the PU-MyoB (48.4% +/- 3.1%) and MyoB (47.9% +/- 3.0%) groups during the observation time. Similarly, left ventricular contractility was significantly higher in groups PU-MyoB (4960 +/- 266 mm Hg/s) and MyoB (4748 +/- 304 mm Hg/s) than in groups PU (3909 +/- 248 mm Hg/s, P = .01) and Sham (4028 +/- 199 mm Hg/s, P = .01). Immunohistology identified a high density of myoblasts within the seeded scaffolds without any migration toward the host cardiac tissue and no evidence of cardiac cell differentiation. CONCLUSIONS: Myoblast-seeded polyurethane scaffolds prevent post-myocardial infarction progression toward heart failure as efficiently as direct intramyocardial injection. The immunohistologic analysis suggests that an indirect mechanism, potentially a paracrine effect, may be assumed.
Resumo:
BACKGROUND: The beneficial effects of beta-blockers and aldosterone receptor antagonists are now well established in patients with severe systolic chronic heart failure (CHF). However, it is unclear whether beta-blockers are able to provide additional benefit in patients already receiving aldosterone antagonists. We therefore examined this question in the COPERNICUS study of 2289 patients with severe CHF receiving the beta1-beta2/alpha1 blocker carvedilol compared with placebo. METHODS: Patients were divided post hoc into subgroups according to whether they were receiving spironolactone (n = 445) or not (n = 1844) at baseline. Consistency of the effect of carvedilol versus placebo was examined for these subgroups with respect to the predefined end points of all-cause mortality, death or CHF-related hospitalizations, death or cardiovascular hospitalizations, and death or all-cause hospitalizations. RESULTS: The beneficial effect of carvedilol was similar among patients who were or were not receiving spironolactone for each of the 4 efficacy measures. For all-cause mortality, the Cox model hazard ratio for carvedilol compared with placebo was 0.65 (95% CI 0.36-1.15) in patients receiving spironolactone and 0.65 (0.51-0.83) in patients not receiving spironolactone. Hazard ratios for death or all-cause hospitalization were 0.76 (0.55-1.05) versus 0.76 (0.66-0.88); for death or cardiovascular hospitalization, 0.61 (0.42-0.89) versus 0.75 (0.64-0.88); and for death or CHF hospitalization, 0.63 (0.43-0.94) versus 0.70 (0.59-0.84), in patients receiving and not receiving spironolactone, respectively. The safety and tolerability of treatment with carvedilol were also similar, regardless of background spironolactone. CONCLUSION: Carvedilol remained clinically efficacious in the COPERNICUS study of patients with severe CHF when added to background spironolactone in patients who were practically all receiving angiotensin-converting enzyme inhibitor (or angiotensin II antagonist) therapy. Therefore, the use of spironolactone in patients with severe CHF does not obviate the necessity of additional treatment that interferes with the adverse effects of sympathetic activation, specifically beta-blockade.
Resumo:
BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1) or beta(3) isoforms, beta(2a) and beta(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal beta(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase"), reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2) expression. Additional evidence for the cause-effect relationship between beta(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible beta(2) cardiac overexpression. Here in non-failing hearts induction of beta(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of beta(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.
Resumo:
Although experimental prevention studies have suggested therapeutic potential of endothelin (ET) antagonists for the treatment of heart failure, the results of clinical trials using ET antagonists on top of standard heart failure medications have been largely disappointing. This experimental study investigated the effects of chronic ET(A) receptor blockade in long-term survivors of myocardial infarction who had developed stable chronic heart failure in the absence of other treatments. Systolic blood pressure, heart rate, organ weights of the right atrium and ventricle, and the lungs were determined, and tissue ET-1 peptide levels were measured in cardiac tissue, lung, and aorta. The results show that chronic blockade of ET(A) receptors stabilizes systolic blood pressure and reverses the heart failure-induced weight increases of right heart chambers and lung. The changes observed occurred independently of tissue ET-1 concentrations and heart rate, suggesting mechanisms independent of local cardiac or pulmonary ET-1 synthesis, which are yet to be identified.