956 resultados para Concrete-filled structures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper summarises the results obtained from non-linear finite-element analysis (NLFEA) of a series of reinforced-concrete one-way slabs with various boundary conditions representative of a bridge deck slab strip in which compressive membrane action governs the structural behaviour. The application of NLFEA for the optimum analysis and design of in-plane restrained concrete slabs is explored. An accurate material model and various equation solution methods were assessed to find a suitable finite-element method for the analysis of concrete slabs in which arching action occurs. Finally, the results from the NLFEA are compared and validated with those from various experimental test data. Significantly, the numerical analysis was able to model the arching action that occurred as a result of external in-plane restraint at the supports and which enhanced the ultimate strength of the slab. The NLFEA gave excellent predictions for the ultimate load-carrying capacity and far more accurate predictions than those obtained using standard flexural or elastic theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:


The permeability of concrete is influenced by the porosity and the interconnectivity of the pores in the cement paste and the microcracks in concrete, especially in the interface of paste-aggregate. The movements of gases, liquids, and ions through concrete is important because of their interactions with concrete constituents, including pore water, which can alter the integrity of concrete directly and indirectly, leading to the deterioration of structures. This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscositymodifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP, have lower permeability properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher watercement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Invention relates to a method of manufacture of a composite concrete article, and in particular to a method of manufacture of a concrete article having textile structures integrated into the surface of the concrete to provide a novel aesthetic and/or functional surface finish

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last 50 years, many bridges have been built as composite structures with decks of reinforced concrete that are supported by longitudinal steel beams. The presence of the longitudinal steel beams and the unloaded area of concrete slab cause the loaded deck slabs to be restrained against lateral expansion. As a result, a compressive membrane thrust is developed. In experimental tests, the authors built a series of one-third scale steel-concrete composite bridge models with several varying structural parameters, including concrete compressive strength, reinforcement percentage, and the size of steel supporting beams. After comparing the results of different models, the influence of these structural parameters on the amount of compressive membrane action in the deck slab was evaluated. Furthermore, the improvement of an existing theoretical model provided accurate predictions for the loading-carrying capacities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the surface zone of concrete is acknowledged as a major factor governing the rate of deterioration of reinforced concrete structures as it provides the only barrier to the ingress of water containing dissolved ionic species such as chlorides which, ultimately, initiate corrosion of the reinforcement. In-situ monitoring of cover-zone concrete is therefore critical in attempting to make realistic predictions as to the in-service performance of the structure. To this end, this paper presents developments in a remote interrogation system to allow continuous, real-time monitoring of the cover-zone concrete from an office setting. Use is made of a multi-electrode array embedded within cover-zone concrete to acquire discretized electrical resistivity and temperature measurements, with both parameters monitored spatially and temporally. On-site instrumentation, which allows remote interrogation of concrete samples placed at a marine exposure site, is detailed, together with data handling and processing procedures. Site-measurements highlight the influence of temperature on electrical resistivity and an Arrhenius-based temperature correction protocol is developed using on-site measurements to standardize resistivity data to a reference temperature; this is an advancement over the use of laboratory-based procedures. The testing methodology and interrogation system represents a robust, low-cost and high-value technique which could be deployed for intelligent monitoring of reinforced concrete structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several products for surface treatment are available on the market to enhance durability characteristics of concrete. For each of these materials a certain level of protection is claimed. However, there is no commonly accepted procedure to assess the effectiveness of these treatments. The inherent generic properties may be of use to the manufacturers and those responsible for specifications, however, practising engineers are interested in knowing how they improve the performance of their structures. Thus in this review an attempt is made to assess the engineering aspects of the various surface treatments so that a procedure for their selection can be proposed. (C) 1997 Elsevier Science Lid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface treatments are used as part of either a maintenance programme or repair work. In both cases, they provide additional protection to the concrete by either arresting or reducing the penetration of aggressive substances from the environment, Numerous materials are available for this purpose and their inherent generic properties differ considerably. Quite often this poses difficulties to practising engineers when selecting a surface treatment for a specific situation, In this review an attempt is made to explain the protective aspects of various surface treatments so that their selection can be made easier, The basic aspects of surface treatments are discussed: function, classification and performance requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that concrete designed to perform satisfactorily in adverse environmental conditions must have a high cement content and a low water-cement ratio. In addition, in order to enhance its durability, many types of additive and admixture such as super-plasticizers, fly ash, silica fume, ggbfs, etc., have been used in the past. However, a close study of the published literature indicates that the effect of mix variables on the durability and the interaction between the various ingredients are not fully understood. Some of these apparent contradictions are due to the limitations in the design of the experimental programme. For instance, it is evident that relatively higher concentrations of aggregates increase the tortuosity of the flow path and hence reduce the permeability, which results in an improvement in the durability. Therefore, an increase in cement content without a proportional decrease in water-cement ratio may reduce the durability. In such cases, the interactive effects of factors can be established by resorting to a properly designed experimental programme, such as the factorial experimental design.