857 resultados para Computing Classification Systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurate estimation of road pavement geometry and layer material properties through the use of proper nondestructive testing and sensor technologies is essential for evaluating pavement’s structural condition and determining options for maintenance and rehabilitation. For these purposes, pavement deflection basins produced by the nondestructive Falling Weight Deflectometer (FWD) test data are commonly used. The nondestructive FWD test drops weights on the pavement to simulate traffic loads and measures the created pavement deflection basins. Backcalculation of pavement geometry and layer properties using FWD deflections is a difficult inverse problem, and the solution with conventional mathematical methods is often challenging due to the ill-posed nature of the problem. In this dissertation, a hybrid algorithm was developed to seek robust and fast solutions to this inverse problem. The algorithm is based on soft computing techniques, mainly Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) as well as the use of numerical analysis techniques to properly simulate the geomechanical system. A widely used pavement layered analysis program ILLI-PAVE was employed in the analyses of flexible pavements of various pavement types; including full-depth asphalt and conventional flexible pavements, were built on either lime stabilized soils or untreated subgrade. Nonlinear properties of the subgrade soil and the base course aggregate as transportation geomaterials were also considered. A computer program, Soft Computing Based System Identifier or SOFTSYS, was developed. In SOFTSYS, ANNs were used as surrogate models to provide faster solutions of the nonlinear finite element program ILLI-PAVE. The deflections obtained from FWD tests in the field were matched with the predictions obtained from the numerical simulations to develop SOFTSYS models. The solution to the inverse problem for multi-layered pavements is computationally hard to achieve and is often not feasible due to field variability and quality of the collected data. The primary difficulty in the analysis arises from the substantial increase in the degree of non-uniqueness of the mapping from the pavement layer parameters to the FWD deflections. The insensitivity of some layer properties lowered SOFTSYS model performances. Still, SOFTSYS models were shown to work effectively with the synthetic data obtained from ILLI-PAVE finite element solutions. In general, SOFTSYS solutions very closely matched the ILLI-PAVE mechanistic pavement analysis results. For SOFTSYS validation, field collected FWD data were successfully used to predict pavement layer thicknesses and layer moduli of in-service flexible pavements. Some of the very promising SOFTSYS results indicated average absolute errors on the order of 2%, 7%, and 4% for the Hot Mix Asphalt (HMA) thickness estimation of full-depth asphalt pavements, full-depth pavements on lime stabilized soils and conventional flexible pavements, respectively. The field validations of SOFTSYS data also produced meaningful results. The thickness data obtained from Ground Penetrating Radar testing matched reasonably well with predictions from SOFTSYS models. The differences observed in the HMA and lime stabilized soil layer thicknesses observed were attributed to deflection data variability from FWD tests. The backcalculated asphalt concrete layer thickness results matched better in the case of full-depth asphalt flexible pavements built on lime stabilized soils compared to conventional flexible pavements. Overall, SOFTSYS was capable of producing reliable thickness estimates despite the variability of field constructed asphalt layer thicknesses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This talk, which is based on our newest findings and experiences from research and industrial projects, addresses one of the most relevant challenges for a decade to come: How to integrate the Internet of Things with software, people, and processes, considering modern Cloud Computing and Elasticity principles. Elasticity is seen as one of the main characteristics of Cloud Computing today. Is elasticity simply scalability on steroids? This talk addresses the main principles of elasticity, presents a fresh look at this problem, and examines how to integrate people, software services, and things into one composite system, which can be modeled, programmed, and deployed on a large scale in an elastic way. This novel paradigm has major consequences on how we view, build, design, and deploy ultra-large scale distributed systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In knowledge technology work, as expressed by the scope of this conference, there are a number of communities, each uncovering new methods, theories, and practices. The Library and Information Science (LIS) community is one such community. This community, through tradition and innovation, theories and practice, organizes knowledge and develops knowledge technologies formed by iterative research hewn to the values of equal access and discovery for all. The Information Modeling community is another contributor to knowledge technologies. It concerns itself with the construction of symbolic models that capture the meaning of information and organize it in ways that are computer-based, but human understandable. A recent paper that examines certain assumptions in information modeling builds a bridge between these two communities, offering a forum for a discussion on common aims from a common perspective. In a June 2000 article, Parsons and Wand separate classes from instances in information modeling in order to free instances from what they call the “tyranny” of classes. They attribute a number of problems in information modeling to inherent classification – or the disregard for the fact that instances can be conceptualized independent of any class assignment. By faceting instances from classes, Parsons and Wand strike a sonorous chord with classification theory as understood in LIS. In the practice community and in the publications of LIS, faceted classification has shifted the paradigm of knowledge organization theory in the twentieth century. Here, with the proposal of inherent classification and the resulting layered information modeling, a clear line joins both the LIS classification theory community and the information modeling community. Both communities have their eyes turned toward networked resource discovery, and with this conceptual conjunction a new paradigmatic conversation can take place. Parsons and Wand propose that the layered information model can facilitate schema integration, schema evolution, and interoperability. These three spheres in information modeling have their own connotation, but are not distant from the aims of classification research in LIS. In this new conceptual conjunction, established by Parsons and Ward, information modeling through the layered information model, can expand the horizons of classification theory beyond LIS, promoting a cross-fertilization of ideas on the interoperability of subject access tools like classification schemes, thesauri, taxonomies, and ontologies. This paper examines the common ground between the layered information model and faceted classification, establishing a vocabulary and outlining some common principles. It then turns to the issue of schema and the horizons of conventional classification and the differences between Information Modeling and Library and Information Science. Finally, a framework is proposed that deploys an interpretation of the layered information modeling approach in a knowledge technologies context. In order to design subject access systems that will integrate, evolve and interoperate in a networked environment, knowledge organization specialists must consider a semantic class independence like Parsons and Wand propose for information modeling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The AntiPhospholipid Syndrome (APS) is an acquired autoimmune disorder induced by high levels of antiphospholipid antibodies that cause arterial and veins thrombosis, as well as pregnancy-related complications and morbidity, as clinical manifestations. This autoimmune hypercoagulable state, usually known as Hughes syndrome, has severe consequences for the patients, being one of the main causes of thrombotic disorders and death. Therefore, it is required to be preventive; being aware of how probable is to have that kind of syndrome. Despite the updated of antiphospholipid syndrome classification, the diagnosis remains difficult to establish. Additional research on clinically relevant antibodies and standardization of their quantification are required in order to improve the antiphospholipid syndrome risk assessment. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a Logic Programming approach to knowledge representation and reasoning, complemented with a computational framework based on Artificial Neural Networks. The proposed model allows for improving the diagnosis, classifying properly the patients that really presented this pathology (sensitivity higher than 85%), as well as classifying the absence of APS (specificity close to 95%).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Internet of Things systems are pervasive systems evolved from cyber-physical to large-scale systems. Due to the number of technologies involved, software development involves several integration challenges. Among them, the ones preventing proper integration are those related to the system heterogeneity, and thus addressing interoperability issues. From a software engineering perspective, developers mostly experience the lack of interoperability in the two phases of software development: programming and deployment. On the one hand, modern software tends to be distributed in several components, each adopting its most-appropriate technology stack, pushing programmers to code in a protocol- and data-agnostic way. On the other hand, each software component should run in the most appropriate execution environment and, as a result, system architects strive to automate the deployment in distributed infrastructures. This dissertation aims to improve the development process by introducing proper tools to handle certain aspects of the system heterogeneity. Our effort focuses on three of these aspects and, for each one of those, we propose a tool addressing the underlying challenge. The first tool aims to handle heterogeneity at the transport and application protocol level, the second to manage different data formats, while the third to obtain optimal deployment. To realize the tools, we adopted a linguistic approach, i.e.\ we provided specific linguistic abstractions that help developers to increase the expressive power of the programming language they use, writing better solutions in more straightforward ways. To validate the approach, we implemented use cases to show that the tools can be used in practice and that they help to achieve the expected level of interoperability. In conclusion, to move a step towards the realization of an integrated Internet of Things ecosystem, we target programmers and architects and propose them to use the presented tools to ease the software development process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Embedding intelligence in extreme edge devices allows distilling raw data acquired from sensors into actionable information, directly on IoT end-nodes. This computing paradigm, in which end-nodes no longer depend entirely on the Cloud, offers undeniable benefits, driving a large research area (TinyML) to deploy leading Machine Learning (ML) algorithms on micro-controller class of devices. To fit the limited memory storage capability of these tiny platforms, full-precision Deep Neural Networks (DNNs) are compressed by representing their data down to byte and sub-byte formats, in the integer domain. However, the current generation of micro-controller systems can barely cope with the computing requirements of QNNs. This thesis tackles the challenge from many perspectives, presenting solutions both at software and hardware levels, exploiting parallelism, heterogeneity and software programmability to guarantee high flexibility and high energy-performance proportionality. The first contribution, PULP-NN, is an optimized software computing library for QNN inference on parallel ultra-low-power (PULP) clusters of RISC-V processors, showing one order of magnitude improvements in performance and energy efficiency, compared to current State-of-the-Art (SoA) STM32 micro-controller systems (MCUs) based on ARM Cortex-M cores. The second contribution is XpulpNN, a set of RISC-V domain specific instruction set architecture (ISA) extensions to deal with sub-byte integer arithmetic computation. The solution, including the ISA extensions and the micro-architecture to support them, achieves energy efficiency comparable with dedicated DNN accelerators and surpasses the efficiency of SoA ARM Cortex-M based MCUs, such as the low-end STM32M4 and the high-end STM32H7 devices, by up to three orders of magnitude. To overcome the Von Neumann bottleneck while guaranteeing the highest flexibility, the final contribution integrates an Analog In-Memory Computing accelerator into the PULP cluster, creating a fully programmable heterogeneous fabric that demonstrates end-to-end inference capabilities of SoA MobileNetV2 models, showing two orders of magnitude performance improvements over current SoA analog/digital solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this paper is to present architecture of automated system that allows monitoring and tracking in real time (online) the possible occurrence of faults and electromagnetic transients observed in primary power distribution networks. Through the interconnection of this automated system to the utility operation center, it will be possible to provide an efficient tool that will assist in decisionmaking by the Operation Center. In short, the desired purpose aims to have all tools necessary to identify, almost instantaneously, the occurrence of faults and transient disturbances in the primary power distribution system, as well as to determine its respective origin and probable location. The compilations of results from the application of this automated system show that the developed techniques provide accurate results, identifying and locating several occurrences of faults observed in the distribution system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power distribution automation and control are import-ant tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagentic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we have built a classification model that is capable of assigning a given sesquiterpene lactone (STL) into exactly one tribe of the plant family Asteraceae from which the STL has been isolated. Although many plant species are able to biosynthesize a set of peculiar compounds, the occurrence of the same secondary metabolites in more than one tribe of Asteraceae is frequent. Building on our previous work, in this paper, we explore the possibility of assigning an STL to more than one tribe (class) simultaneously. When an object may belong to more than one class simultaneously, it is called multilabeled. In this work, we present a general overview of the techniques available to examine multilabeled data. The problem of evaluating the performance of a multilabeled classifier is discussed. Two particular multilabeled classification methods-cross-training with support vector machines (ct-SVM) and multilabeled k-nearest neighbors (M-L-kNN)were applied to the classification of the STLs into seven tribes from the plant family Asteraceae. The results are compared to a single-label classification and are analyzed from a chemotaxonomic point of view. The multilabeled approach allowed us to (1) model the reality as closely as possible, (2) improve our understanding of the relationship between the secondary metabolite profiles of different Asteraceae tribes, and (3) significantly decrease the number of plant sources to be considered for finding a certain STL. The presented classification models are useful for the targeted collection of plants with the objective of finding plant sources of natural compounds that are biologically active or possess other specific properties of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a model of specification-based testing of interactive systems. This model provides the basis for a framework to guide such testing. Interactive systems are traditionally decomposed into a functionality component and a user interface component; this distinction is termed dialogue separation and is the underlying basis for conceptual and architectural models of such systems. Correctness involves both proper behaviour of the user interface and proper computation by the underlying functionality. Specification-based testing is one method used to increase confidence in correctness, but it has had limited application to interactive system development to date.