882 resultados para Computer aided network analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to the increasing international competitiveness, many manufacturing businesses are rethinking their management strategies and philosophies towards achieving a computer integrated environment. The explosive growth in Advanced Manufacturing Technology (AMI) has resulted in the formation of functional "Islands of Automation" such as Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), Computer Aided Process Planning (CAPP) and Manufacturing Resources Planning (MRPII). This has resulted in an environment which has focussed areas of excellence and poor overall efficiency, co-ordination and control. The main role of Computer Integrated Manufacturing (CIM) is to integrate these islands of automation and develop a totally integrated and controlled environment. However, the various perceptions of CIM, although developing, remain focussed on a very narrow integration scope and have consequently resulted in mere linked islands of automation with little improvement in overall co-ordination and control. This thesis, that is the research described within, develops and examines a more holistic view of CIM, which is based on the integration of various business elements. One particular business element, namely control, has been shown to have a multi-facetted and underpinning relationship with the CIM philosophy. This relationship impacts various CIM system design aspects including the CIM business analysis and modelling technique, the specification of systems integration requirements, the CIM system architectural form and the degree of business redesign. The research findings show that fundamental changes to CIM system design are required; these are incorporated in a generic CIM design methodology. The affect and influence of this holistic view of CIM on a manufacturing business has been evaluated through various industrial case study applications. Based on the evidence obtained, it has been concluded that this holistic, control based approach to CIM can provide a greatly improved means of achieving a totally integrated and controlled business environment. This generic CIM methodology will therefore make a significant contribution to the planning, modelling, design and development of future CIM systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors propose a new approach to discourse analysis which is based on meta data from social networking behavior of learners who are submerged in a socially constructivist e-learning environment. It is shown that traditional data modeling techniques can be combined with social network analysis - an approach that promises to yield new insights into the largely uncharted domain of network-based discourse analysis. The chapter is treated as a non-technical introduction and is illustrated with real examples, visual representations, and empirical findings. Within the setting of a constructivist statistics course, the chapter provides an illustration of what network-based discourse analysis is about (mainly from a methodological point of view), how it is implemented in practice, and why it is relevant for researchers and educators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is one of the biggest environmental problems of the 21st century. The most sensitive indicators of the effects of the climatic changes are phenological processes of the biota. The effects of climate change which were observed the earliest are the remarkable changes in the phenology (i.e. the timing of the phenophases) of the plants and animals, which have been systematically monitored later. In our research we searched for the answer: which meteorological factors show the strongest statistical relationships with phenological phenomena based on some chosen plant and insect species (in case of which large phenological databases are available). Our study was based on two large databases: one of them is the Lepidoptera database of the Hungarian Plant Protection and Forestry Light Trap Network, the other one is the Geophytes Phenology Database of the Botanical Garden of Eötvös Loránd University. In the case of butterflies, statistically defined phenological dates were determined based on the daily collection data, while in the case of plants, observation data on blooming were available. The same meteorological indicators were applied for both groups in our study. On the basis of the data series, analyses of correlation were carried out and a new indicator, the so-called G index was introduced, summing up the number of correlations which were found to be significant on the different levels of significance. In our present study we compare the significant meteorological factors and analyse the differences based on the correlation data on plants and butterflies. Data on butterflies are much more varied regarding the effectiveness of the meteorological factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small Arms and Light Weapons (SALW) proliferation was undertaken by the Non-Governmental Organizations (NGOs) as the next important issue in international relations after the success of the International Campaign to Ban Landmines (ICBL). This dissertation focuses on the reasons why the issue of SALW resulted in an Action Program rather than an international convention. Thus, this result was considered as unsuccessful by the advocates of regulating the illicit trade in SALW. The study provides a social movement theoretical approach, using framing, political opportunity and network analysis to explain why the advocates of regulating the illicit trade in SALW did no succeed in their goals. The UN is taken as the arena in which NGOs, States and International Governmental Organizations (IGOs) discussed the illicit trade in SALW. ^ The findings of the study indicate that the political opportunity for the issue of SALW was not ideal. The network of NGOs, States and IGOs was not strong. The NGOs advocating regulation of SALW were divided over the approach of the issue and were part of different coalitions with differing objectives. Despite initial widespread interest among States, only a couple of States were fully committed to the issue till the end. The regional IGOs approached the issue based on their regional priorities and were less interested in an international covenant. The advocates of regulating illicit trade in SALW attempted to frame SALW as a humanitarian issue rather than as a security issue. Thus they were not able to use frame alignment to convince states to treat SALW as a humanitarian issue. In conclusion it can be said that all three items, framing, political opportunity and the network, play a role in the lack of success of advocates for regulating the illicit trade in SALW. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To carry out their specific roles in the cell, genes and gene products often work together in groups, forming many relationships among themselves and with other molecules. Such relationships include physical protein-protein interaction relationships, regulatory relationships, metabolic relationships, genetic relationships, and much more. With advances in science and technology, some high throughput technologies have been developed to simultaneously detect tens of thousands of pairwise protein-protein interactions and protein-DNA interactions. However, the data generated by high throughput methods are prone to noise. Furthermore, the technology itself has its limitations, and cannot detect all kinds of relationships between genes and their products. Thus there is a pressing need to investigate all kinds of relationships and their roles in a living system using bioinformatic approaches, and is a central challenge in Computational Biology and Systems Biology. This dissertation focuses on exploring relationships between genes and gene products using bioinformatic approaches. Specifically, we consider problems related to regulatory relationships, protein-protein interactions, and semantic relationships between genes. A regulatory element is an important pattern or "signal", often located in the promoter of a gene, which is used in the process of turning a gene "on" or "off". Predicting regulatory elements is a key step in exploring the regulatory relationships between genes and gene products. In this dissertation, we consider the problem of improving the prediction of regulatory elements by using comparative genomics data. With regard to protein-protein interactions, we have developed bioinformatics techniques to estimate support for the data on these interactions. While protein-protein interactions and regulatory relationships can be detected by high throughput biological techniques, there is another type of relationship called semantic relationship that cannot be detected by a single technique, but can be inferred using multiple sources of biological data. The contributions of this thesis involved the development and application of a set of bioinformatic approaches that address the challenges mentioned above. These included (i) an EM-based algorithm that improves the prediction of regulatory elements using comparative genomics data, (ii) an approach for estimating the support of protein-protein interaction data, with application to functional annotation of genes, (iii) a novel method for inferring functional network of genes, and (iv) techniques for clustering genes using multi-source data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary goal of this dissertation is the study of patterns of viral evolution inferred from serially-sampled sequence data, i.e., sequence data obtained from strains isolated at consecutive time points from a single patient or host. RNA viral populations have an extremely high genetic variability, largely due to their astronomical population sizes within host systems, high replication rate, and short generation time. It is this aspect of their evolution that demands special attention and a different approach when studying the evolutionary relationships of serially-sampled sequence data. New methods that analyze serially-sampled data were developed shortly after a groundbreaking HIV-1 study of several patients from which viruses were isolated at recurring intervals over a period of 10 or more years. These methods assume a tree-like evolutionary model, while many RNA viruses have the capacity to exchange genetic material with one another using a process called recombination. ^ A genealogy involving recombination is best described by a network structure. A more general approach was implemented in a new computational tool, Sliding MinPD, one that is mindful of the sampling times of the input sequences and that reconstructs the viral evolutionary relationships in the form of a network structure with implicit representations of recombination events. The underlying network organization reveals unique patterns of viral evolution and could help explain the emergence of disease-associated mutants and drug-resistant strains, with implications for patient prognosis and treatment strategies. In order to comprehensively test the developed methods and to carry out comparison studies with other methods, synthetic data sets are critical. Therefore, appropriate sequence generators were also developed to simulate the evolution of serially-sampled recombinant viruses, new and more through evaluation criteria for recombination detection methods were established, and three major comparison studies were performed. The newly developed tools were also applied to "real" HIV-1 sequence data and it was shown that the results represented within an evolutionary network structure can be interpreted in biologically meaningful ways. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, a surprising new phenomenon has emerged in which globally-distributed online communities collaborate to create useful and sophisticated computer software. These open source software groups are comprised of generally unaffiliated individuals and organizations who work in a seemingly chaotic fashion and who participate on a voluntary basis without direct financial incentive. The purpose of this research is to investigate the relationship between the social network structure of these intriguing groups and their level of output and activity, where social network structure is defined as 1) closure or connectedness within the group, 2) bridging ties which extend outside of the group, and 3) leader centrality within the group. Based on well-tested theories of social capital and centrality in teams, propositions were formulated which suggest that social network structures associated with successful open source software project communities will exhibit high levels of bridging and moderate levels of closure and leader centrality. The research setting was the SourceForge hosting organization and a study population of 143 project communities was identified. Independent variables included measures of closure and leader centrality defined over conversational ties, along with measures of bridging defined over membership ties. Dependent variables included source code commits and software releases for community output, and software downloads and project site page views for community activity. A cross-sectional study design was used and archival data were extracted and aggregated for the two-year period following the first release of project software. The resulting compiled variables were analyzed using multiple linear and quadratic regressions, controlling for group size and conversational volume. Contrary to theory-based expectations, the surprising results showed that successful project groups exhibited low levels of closure and that the levels of bridging and leader centrality were not important factors of success. These findings suggest that the creation and use of open source software may represent a fundamentally new socio-technical development process which disrupts the team paradigm and which triggers the need for building new theories of collaborative development. These new theories could point towards the broader application of open source methods for the creation of knowledge-based products other than software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it. Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the computational process are related to the imposed boundary conditions and the well conformed geometry. Any geometric model that contains gaps or open lines is considered an imperfect geometry model and major commercial solver packages are incapable of handling such inputs. Others packages apply different kinds of methods to resolve this problems like patching or zippering; but the final resolved geometry may be different from the original geometry, and the changes may be unacceptable. The study proposed in this dissertation is based on a new technique to process models with geometrical imperfection without the necessity to repair or change the original geometry. An algorithm is presented that is able to analyze the imperfect geometric model with the imposed boundary conditions using a meshfree method and a distance field approximation to the boundaries. Experiments are proposed to analyze the convergence of the algorithm in imperfect models geometries and will be compared with the same models but with perfect geometries. Plotting results will be presented for further analysis and conclusions of the algorithm convergence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fractal self-similarity property is studied to develop frequency selective surfaces (FSS) with several rejection bands. Particularly, Gosper fractal curves are used to define the shapes of the FSS elements. Due to the difficulty of making the FSS element details, the analysis is developed for elements with up to three fractal levels. The simulation was carried out using Ansoft Designer software. For results validation, several FSS prototypes with fractal elements were fabricated. In the fabrication process, fractals elements were designed using computer aided design (CAD) tools. The prototypes were measured using a network analyzer (N3250A model, Agilent Technologies). Matlab software was used to generate compare measured and simulated results. The use of fractal elements in the FSS structures showed that the use of high fractal levels can reduce the size of the elements, at the same time as decreases the bandwidth. We also investigated the effect produced by cascading FSS structures. The considered cascaded structures are composed of two FSSs separated by a dielectric layer, which distance is varied to determine the effect produced on the bandwidth of the coupled geometry. Particularly, two FSS structures were coupled through dielectric layers of air and fiberglass. For comparison of results, we designed, fabricated and measured several prototypes of FSS on isolated and coupled structures. Agreement was observed between simulated and measured results. It was also observed that the use of cascaded FSS structures increases the FSSs bandwidths and, in particular cases, the number of resonant frequencies, in the considered frequency range. In future works, we will investigate the effects of using different types of fractal elements, in isolated, multilayer and coupled FSS structures for applications on planar filters, high-gain microstrip antennas and microwave absorbers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities. Current virtual topology technology is extended to allow the virtual partitioning of volume cells and the topological queries required to carry out each operation are provided. Virtual representations are robustly linked to the underlying geometric definition through an analysis topology. The analysis topology and all associated virtual and topological dependencies are automatically updated after each virtual operation, providing the link to the underlying CAD geometry. Therefore, a valid description of the analysis topology, including relative orientations, is maintained. This enables downstream operations, such as the merging or partitioning of virtual entities, and interrogations, such as determining if a specific meshing strategy can be applied to the virtual volume cells, to be performed on the analysis topology description. As the virtual representation is a non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. This enables the advantages of non-manifold modelling to be exploited within the manifold modelling environment of a major commercial CAD system, without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence, whilst the original CAD geometry is not disturbed. Robust definitions of the topological and virtual dependencies enable the same virtual topology definitions to be accessed, interrogated and manipulated within multiple different CAD packages and linked to the underlying geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central motif of this work is prediction and optimization in presence of multiple interacting intelligent agents. We use the phrase `intelligent agents' to imply in some sense, a `bounded rationality', the exact meaning of which varies depending on the setting. Our agents may not be `rational' in the classical game theoretic sense, in that they don't always optimize a global objective. Rather, they rely on heuristics, as is natural for human agents or even software agents operating in the real-world. Within this broad framework we study the problem of influence maximization in social networks where behavior of agents is myopic, but complication stems from the structure of interaction networks. In this setting, we generalize two well-known models and give new algorithms and hardness results for our models. Then we move on to models where the agents reason strategically but are faced with considerable uncertainty. For such games, we give a new solution concept and analyze a real-world game using out techniques. Finally, the richest model we consider is that of Network Cournot Competition which deals with strategic resource allocation in hypergraphs, where agents reason strategically and their interaction is specified indirectly via player's utility functions. For this model, we give the first equilibrium computability results. In all of the above problems, we assume that payoffs for the agents are known. However, for real-world games, getting the payoffs can be quite challenging. To this end, we also study the inverse problem of inferring payoffs, given game history. We propose and evaluate a data analytic framework and we show that it is fast and performant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 19: Knowledge Management in Networks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research trends in computer-aided drug design have shown an increasing interest towards the implementation of advanced approaches able to deal with large amount of data. This demand arose from the awareness of the complexity of biological systems and from the availability of data provided by high-throughput technologies. As a consequence, drug research has embraced this paradigm shift exploiting approaches such as that based on networks. Indeed, the process of drug discovery can benefit from the implementation of network-based methods at different steps from target identification to drug repurposing. From this broad range of opportunities, this thesis is focused on three main topics: (i) chemical space networks (CSNs), which are designed to represent and characterize bioactive compound data sets; (ii) drug-target interactions (DTIs) prediction through a network-based algorithm that predicts missing links; (iii) COVID-19 drug research which was explored implementing COVIDrugNet, a network-based tool for COVID-19 related drugs. The main highlight emerged from this thesis is that network-based approaches can be considered useful methodologies to tackle different issues in drug research. In detail, CSNs are valuable coordinate-free, graphically accessible representations of structure-activity relationships of bioactive compounds data sets especially for medium-large libraries of molecules. DTIs prediction through the random walk with restart algorithm on heterogeneous networks can be a helpful method for target identification. COVIDrugNet is an example of the usefulness of network-based approaches for studying drugs related to a specific condition, i.e., COVID-19, and the same ‘systems-based’ approaches can be used for other diseases. To conclude, network-based tools are proving to be suitable in many applications in drug research and provide the opportunity to model and analyze diverse drug-related data sets, even large ones, also integrating different multi-domain information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.