853 resultados para Computer aided design tool
Resumo:
A channel router is an important design aid in the design automation of VLSI circuit layout. Many algorithms have been developed based on various wiring models with routing done on two layers. With the recent advances in VLSI process technology, it is possible to have three independent layers for interconnection. In this paper two algorithms are presented for three-layer channel routing. The first assumes a very simple wiring model. This enables the routing problem to be solved optimally in a time of O(n log n). The second algorithm is for a different wiring model and has an upper bound of O(n2) for its execution time. It uses fewer horizontal tracks than the first algorithm. For the second model the channel width is not bounded by the channel density.
Resumo:
The clutter-rejection properties of compact f.s.k. bursts with amplitude modulation are investigated. A procedure for computer-aided design of such signals is given. The loss of clutter performance on constraining the individual pulse amplitudes to be equal is evaluated.
Resumo:
The application of computer-aided inspection integrated with the coordinate measuring machine and laser scanners to inspect manufactured aircraft parts using robust registration of two-point datasets is a subject of active research in computational metrology. This paper presents a novel approach to automated inspection by matching shapes based on the modified iterative closest point (ICP) method to define a criterion for the acceptance or rejection of a part. This procedure improves upon existing methods by doing away with the following, viz., the need for constructing either a tessellated or smooth representation of the inspected part and requirements for an a priori knowledge of approximate registration and correspondence between the points representing the computer-aided design datasets and the part to be inspected. In addition, this procedure establishes a better measure for error between the two matched datasets. The use of localized region-based triangulation is proposed for tracking the error. The approach described improves the convergence of the ICP technique with a dramatic decrease in computational effort. Experimental results obtained by implementing this proposed approach using both synthetic and practical data show that the present method is efficient and robust. This method thereby validates the algorithm, and the examples demonstrate its potential to be used in engineering applications.
Resumo:
There has been a demand for uniform CAD standards in the construction industry ever since the large-scale introduction of computer aided design systems in the late 1980s. While some standards have been widely adopted without much formal effort, other standards have failed to gain support even though considerable resources have been allocated for the purpose. Establishing a standard concerning building information modeling has been one particularly active area of industry development and scientific interest within recent years. In this paper, four different standards are discussed as cases: the IGES and DXF/DWG standards for representing the graphics in 2D drawings, the ISO 13567 standard for the structuring of building information on layers, and the IFC standard for building product models. Based on a literature study combined with two qualitative interview studies with domain experts, a process model is proposed to describe and interpret the contrasting histories of past CAD standardisation processes.
Resumo:
The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.
Resumo:
Artificial neural networks (ANNs) have shown great promise in modeling circuit parameters for computer aided design applications. Leakage currents, which depend on process parameters, supply voltage and temperature can be modeled accurately with ANNs. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN-based leakage model. To the best of our knowledge this is the first result in this direction. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). All existing SLA frameworks are closely tied to the exponential polynomial leakage model and hence fail to work with sophisticated ANN models. In this paper, we also set up an SLA framework that can efficiently work with these ANN models. Results show that the cumulative distribution function of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo-based simulations, being less than 1% and 2% respectively across a range of voltage and temperature values.
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
This paper presents an algorithm for generating the Interior Medial Axis Transform (iMAT) of 3D objects with free-form boundaries. The algorithm proposed uses the exact representation of the part and generates an approximate rational spline description of the iMAT. The algorithm generates the iMAT by a tracing technique that marches along the object's boundary. The level of approximation is controlled by the choice of the step size in the tracing procedure. Criteria based on distance and local curvature of boundary entities are used to identify the junction points and the search for these junction points is done in an efficient way. The algorithm works for multiply-connected objects as well. Results of the implementation are provided. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Standard-cell design methodology is an important technique in semicustom-VLSI design. It lends itself to the easy automation of the crucial layout part, and many algorithms have been proposed in recent literature for the efficient placement of standard cells. While many studies have identified the Kerninghan-Lin bipartitioning method as being superior to most others, it must be admitted that the behaviour of the method is erratic, and that it is strongly dependent on the initial partition. This paper proposes a novel algorithm for overcoming some of the deficiencies of the Kernighan-Lin method. The approach is based on an analogy of the placement problem with neural networks, and, by the use of some of the organizing principles of these nets, an attempt is made to improve the behavior of the bipartitioning scheme. The results have been encouraging, and the approach seems to be promising for other NP-complete problems in circuit layout.
Resumo:
Digital human modeling (DHM) involves modeling of structure, form and functional capabilities of human users for ergonomics simulation. This paper presents application of geometric procedures for investigating the characteristics of human visual capabilities which are particularly important in the context mentioned above. Using the cone of unrestricted directions through the pupil on a tessellated head model as the geometric interpretation of the clinical field-of-view (FoV), the results obtained are experimentally validated. Estimating the pupil movement for a given gaze direction using Listing's Law, FoVs are re-computed. Significant variation of the FoV is observed with the variation in gaze direction. A novel cube-grid representation, which integrated the unit-cube representation of directions and the enhanced slice representation has been introduced for fast and exact point classification for point visibility analysis for a given FoV. Computation of containment frequency of every grid-cell for a given set of FoVs enabled determination of percentile-based FoV contours for estimating the visual performance of a given population. This is a new concept which makes visibility analysis more meaningful from ergonomics point-of-view. The algorithms are fast enough to support interactive analysis of reasonably complex scenes on a typical desktop computer. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new algorithm for extracting Free-Form Surface Features (FFSFs) from a surface model. The extraction algorithm is based on a modified taxonomy of FFSFs from that proposed in the literature. A new classification scheme has been proposed for FFSFs to enable their representation and extraction. The paper proposes a separating curve as a signature of FFSFs in a surface model. FFSFs are classified based on the characteristics of the separating curve (number and type) and the influence region (the region enclosed by the separating curve). A method to extract these entities is presented. The algorithm has been implemented and tested for various free-form surface features on different types of free-form surfaces (base surfaces) and is found to correctly identify and represent the features irrespective of the type of underlying surface. The representation and extraction algorithm are both based on topology and geometry. The algorithm is data-driven and does not use any pre-defined templates. The definition presented for a feature is unambiguous and application independent. The proposed classification of FFSFs can be used to develop an ontology to determine semantic equivalences for the feature to be exchanged, mapped and used across PLM applications. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A new and efficient approach to construct a 3D wire-frame of an object from its orthographic projections is described. The input projections can be two or more and can include regular and complete auxiliary views. Each view may contain linear, circular and other conic sections. The output is a 3D wire-frame that is consistent with the input views. The approach can handle auxiliary views containing curved edges. This generality derives from a new technique to construct 3D vertices from the input 2D vertices (as opposed to matching coordinates that is prevalent in current art). 3D vertices are constructed by projecting the 2D vertices in a pair of views on the common line of the two views. The construction of 3D edges also does not require the addition of silhouette and tangential vertices and subsequently splitting edges in the views. The concepts of complete edges and n-tuples are introduced to obviate this need. Entities corresponding to the 3D edge in each view are first identified and the 3D edges are then constructed from the information available with the matching 2D edges. This allows the algorithm to handle conic sections that are not parallel to any of the viewing directions. The localization of effort in constructing 3D edges is the source of efficiency of the construction algorithm as it does not process all potential 3D edges. Working of the algorithm on typical drawings is illustrated. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Charge linearization techniques have been used over the years in advanced compact models for bulk and double-gate MOSFETs in order to approximate the position along the channel as a quadratic function of the surface potential (or inversion charge densities) so that the terminal charges can be expressed as a compact closed-form function of source and drain end surface potentials (or inversion charge densities). In this paper, in case of the independent double-gate MOSFETs, we show that the same technique could be used to model the terminal charges quite accurately only when the 1-D Poisson solution along the channel is fully hyperbolic in nature or the effective gate voltages are same. However, for other bias conditions, it leads to significant error in terminal charge computation. We further demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel actually dictates if the conventional charge linearization technique could be applied for a particular bias condition or not. Taking into account this nonlinearity, we propose a compact charge model, which is based on a novel piecewise linearization technique and shows excellent agreement with numerical and Technology Computer-Aided Design (TCAD) simulations for all bias conditions and also preserves the source/drain symmetry which is essential for Radio Frequency (RF) circuit design. The model is implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.
Resumo:
This paper presents classification, representation and extraction of deformation features in sheet-metal parts. The thickness is constant for these shape features and hence these are also referred to as constant thickness features. The deformation feature is represented as a set of faces with a characteristic arrangement among the faces. Deformation of the base-sheet or forming of material creates Bends and Walls with respect to a base-sheet or a reference plane. These are referred to as Basic Deformation Features (BDFs). Compound deformation features having two or more BDFs are defined as characteristic combinations of Bends and Walls and represented as a graph called Basic Deformation Features Graph (BDFG). The graph, therefore, represents a compound deformation feature uniquely. The characteristic arrangement of the faces and type of bends belonging to the feature decide the type and nature of the deformation feature. Algorithms have been developed to extract and identify deformation features from a CAD model of sheet-metal parts. The proposed algorithm does not require folding and unfolding of the part as intermediate steps to recognize deformation features. Representations of typical features are illustrated and results of extracting these deformation features from typical sheet metal parts are presented and discussed. (C) 2013 Elsevier Ltd. All rights reserved.