993 resultados para Competitive dynamics
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff. © 2014 IEEE.
Resumo:
Consider a single processor and a software system. The software system comprises components and interfaces where each component has an associated interface and each component comprises a set of constrained-deadline sporadic tasks. A scheduling algorithm (called global scheduler) determines at each instant which component is active. The active component uses another scheduling algorithm (called local scheduler) to determine which task is selected for execution on the processor. The interface of a component makes certain information about a component visible to other components; the interfaces of all components are used for schedulability analysis. We address the problem of generating an interface for a component based on the tasks inside the component. We desire to (i) incur only a small loss in schedulability analysis due to the interface and (ii) ensure that the amount of space (counted in bits) of the interface is small; this is because such an interface hides as much details of the component as possible. We present an algorithm for generating such an interface.
Resumo:
Power law PL and fractional calculus are two faces of phenomena with long memory behavior. This paper applies PL description to analyze different periods of the business cycle. With such purpose the evolution of ten important stock market indices DAX, Dow Jones, NASDAQ, Nikkei, NYSE, S&P500, SSEC, HSI, TWII, and BSE over time is studied. An evolutionary algorithm is used for the fitting of the PL parameters. It is observed that the PL curve fitting constitutes a good tool for revealing the signal main characteristics leading to the emergence of the global financial dynamic evolution.
Resumo:
Financial time series have a complex dynamic nature. Many techniques were adopted having in mind standard paradigms of time flow. This paper explores an alternative route involving relativistic effects. It is observed that the measuring perspective influences the results and that we can have different time textures.
Resumo:
Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic and health aspects of the human life. Surface temperature time-series characterise Earth as a slow dynamics spatiotemporal system, evidencing long memory behaviour, typical of fractional order systems. Such phenomena are difficult to model and analyse, demanding for alternative approaches. This paper studies the complex correlations between global temperature time-series using the Multidimensional scaling (MDS) approach. MDS provides a graphical representation of the pattern of climatic similarities between regions around the globe. The similarities are quantified through two mathematical indices that correlate the monthly average temperatures observed in meteorological stations, over a given period of time. Furthermore, time dynamics is analysed by performing the MDS analysis over slices sampling the time series. MDS generates maps describing the stations’ locus in the perspective that, if they are perceived to be similar to each other, then they are placed on the map forming clusters. We show that MDS provides an intuitive and useful visual representation of the complex relationships that are present among temperature time-series, which are not perceived on traditional geographic maps. Moreover, MDS avoids sensitivity to the irregular distribution density of the meteorological stations.
Resumo:
Fractional dynamics reveals long range memory properties of systems described by means of signals represented by real numbers. Alternatively, dynamical systems and signals can adopt a representation where states are quantified using a set of symbols. Such signals occur both in nature and in man made processes and have the potential of a aftermath as relevant as the classical counterpart. This paper explores the association of Fractional calculus and symbolic dynamics. The results are visualized by means of the multidimensional technique and reveal the association between the fractal dimension and one definition of fractional derivative.
Resumo:
This paper presents a novel method for the analysis of nonlinear financial and economic systems. The modeling approach integrates the classical concepts of state space representation and time series regression. The analytical and numerical scheme leads to a parameter space representation that constitutes a valid alternative to represent the dynamical behavior. The results reveal that business cycles can be clearly revealed, while the noise effects common in financial indices can elegantly be filtered out of the results.
Resumo:
This paper studies the dynamical properties of a system with distributed backlash and impact phenomena. This means that it is considered a chain of masses that interact with each other solely by means of backlash and impact phenomena. It is observed the emergence of non-linear phenomena resembling those encountered in the Fermi-Pasta-Ulam problem.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
Compositional real-time scheduling clearly requires that ”normal” real-time scheduling challenges are addressed but challenges intrinsic to compositionality must be addressed as well, in particular: (i) how should interfaces be described? and (ii) how should numerical values be assigned to parameters constituting the interfaces? The real-time systems community has traditionally used narrow interfaces for describing a component (for example, a utilization/bandwidthlike metric and the distribution of this bandwidth in time). In this paper, we introduce the concept of competitive ratio of an interface and show that typical narrow interfaces cause poor performance for scheduling constrained-deadline sporadic tasks (competitive ratio is infinite). Therefore, we explore more expressive interfaces; in particular a class called medium-wide interfaces. For this class, we propose an interface type and show how the parameters of the interface should be selected. We also prove that this interface is 8-competitive.
Resumo:
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate between processors. We propose an algorithm which can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm is given processors that are three times faster.
Resumo:
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate between processors. On each processor, tasks are scheduled according to rate-monotonic. We propose an algorithm that can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm is given processors that are √2 / √2−1 ≈ 3.41 times faster. No such guarantees are previously known for partitioned static-priority scheduling on uniform multiprocessors.
Resumo:
Consider the problem of deciding whether a set of n sporadic message streams meet deadlines on a Controller Area Network (CAN) bus for a specified priority assignment. It is assumed that message streams have implicit deadlines and no release jitter. An algorithm to solve this problem is well known but unfortunately it time complexity is non-polynomial. We present an algorithm with polynomial time-complexity for computing an upper bound on the response times. Clearly, if the upper bound on the response time does not exceed the deadline then all deadlines are met. The pessimism of our approach is proven: if the upper bound of the response time exceeds the deadline then the response time exceeds the deadline as well for a CAN network with half the speed.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.