925 resultados para Combined sewers
Combined Coal Gasification and Methane Reforming for Production of Syngas in a Fluidized Bed Reactor
Resumo:
Within a chiral constituent quark model approach, η-meson production on the proton via electromagnetic and hadron probes is studied. With few parameters, the differential cross section and polarized beam asymmetry for γp → ηp and differential cross section for π − p → ηn processes are calculated and successfully compared with the data in the center-of-mass energy range from threshold up to 2 GeV. The five known resonances S11(1535), S11(1650), P13(1720),D13(1520), and F15(1680) are found to be dominant in the reaction mechanisms in both channels. Possible roles played by new resonances are also investigated; and in the photoproduction channel, significant contribution from S11 and D15 resonances, with masses around 1715 and 2090 MeV, respectively, are deduced. For the so-called missing resonances, no evidence is found within the investigated reactions. The helicity amplitudes and decay widths of N ∗ → πN, ηN are also presented and found to be consistent with the Particle Data Group values.
Resumo:
A recoil separator Wien-filter which was developed for the Radioactive Ion Beam Line in Lanzhou (RIBLL) as an extension is described. It consists of 2 quadruple triplets and a standard Wien-filter. It was designed for study of the fusion-evaporation reactions. The overall design, background suppression, the transmission efficiency, the angular acceptance and the momentum acceptance have been described. All the performances fulfil the designed requirements. Based on the test results, with some modifications the investigations of the nuclei with Z <= 110 and the drip-line nuclei in the medium-heavy mass region can be carried out with this facility.
Resumo:
A new reaction mode, i.e., the combined single-pass conversion of methane via oxidative coupling (OCM) over mixed metal oxide (SLC) catalysts and dehydroaromatization (MDA) over Mo/HZSM-5 catalysts, is reported. With the assistance of an OCM reaction over SLC catalysts in the top layer of the reactor, the deactivation resistance of Mo/HZSM-5 catalysts is remarkably enhanced. Under the selected reaction conditions, the CH(4) conversion decreased from similar to18 to similar to1% and the aromatics yield decreased from 12.8 to 0.1%, respectively, after running the reaction for 960 min on both 6Mo/HZSM-5 and SLC-6Mo/HZSM-5 catalyst system without O(2) in the feed. On the other hand, for the SLC-6Mo/HZSM-5 catalyst system with O(2) in the feed, the deactivation was improved greatly, and after 960 min onstream the CH(4) conversion and aromatics yield were still as high as 12.0 and 8.0%, respectively. The promotion effect mainly appears to be associated with in situ formation of CO(2) in the OCM layer, which reacts with coke via the reverse Boudouard reaction.
Resumo:
A method has been developed for the determination of interactions of metal ions and protein by using microdialysis sampling technique combined with pre-column derivation and reversed-phase ion-pair liquid chromatographic (HPLC analysis. Cu(II), Zn(II) and human serum albumin (HSA) were chosen as model metal ions and protein, respectively. The mixed solutions of metal ions and HSA with different molar ratios buffered with 0.1 M Tris-HCl containing 0.1 M NaCl at pH 7.43 were sampled with a mirodialysis probe by keeping perfusion rate at 1 mul/min and the temperature at 37 degreesC. The free concentrations of metal ions in microdialysates were assayed by precolumn derivatization with meso-tetra(4-sulfophenyl)-porphyrin (TPPS4) followed ion-pair HPLC analysis. The recovery (R) of microdialysis sampling was measured in vitro under similar conditions as 65.74% for Cu(II), 70.45% for Zn(II) with R.S.D. below 3.2%. The primary binding constants and number of binding site estimated by the Scatchard plot analysis are 5.04 x 10(6) M-1 and 0.85 for Cu(II), and 9.87 x 10(6) M-1 and 1.10 for Zn(II), respectively. The competition of Cu(II) and Zn(II) at the second binding site on HSA was investigated, and it was observed that there is a second site on HSA to bind Cu(II) and Zn(II), the affinity of Cu(II) is stronger than that of Zn(II) to this second site of HSA. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) can be effectively improved at the PSS-BMIMPF6 modified GC.
Resumo:
Combination of Ni2O3 and solid acid with Bronsted acid sites and Lewis acid sites (such as HZSM-5 and H-beta) could dramatically improve fire retardancy of polyolefin, including polypropylene and linear low-density polyethylene. This is mainly attributed to the formation of a large amount of residual char from degradation products of polyolefin in the intermediate stage of combustion. Thus, the amount of flammable components diffusing into the flame zone was small.
Resumo:
The stability of diester-diterpenoid alkaloids (DDA) from plants of the genus Aconitum L. has been studied in different solvents and pH buffers. The HPLC/ESIMS method for analysing the concentration of DDA was established and DDA's decomposition products were elucidated by HPLC/ESI-MS/MSn. In different solvents, e.g. dichloromethane, ether, methanol and distilled water, the decomposition pathways of DDA are quite different and their difference in stabilities depends on the difference of their structures, in which substituents at the N atom and substituents at C-3 are different. The pyrolytic products of DDA, such as deacetoxy aconitine-type alkaloids, have been observed in the above solvents, whereas 8-methoxy-14-benzoyl aconitine-type alkaloids have been obtained only in methanol.