961 resultados para Collapsible soils
Resumo:
The interaction between the soil and tillage tool can be examined using different parameters for the soil and the tool. Among the soil parameters are the shear stress, cohesion, internal friction angle of the soil and the pre-compression stress. The tool parameters are mainly the tool geometry and depth of operation. Regarding to the soils of Rio Grande do Sul there are hardly any studies and evaluations of the parameters that have importance in the use of mathematical models to predict tensile loads. The objective was to obtain parameters related to the soils of Rio Grande do Sul, which are used in soil-tool analysis, more specifically on mathematical models that allow the calculation of tractive effort for symmetric and narrow tools. Two of the main soils of Rio Grande do Sul, an Albaqualf and a Paleudult were studied. Equations that relate the cohesion, internal friction angle of the soil, adhesion, soil-tool friction angle and pre-compression stress as a function of water content in the soil were obtained, leading to important information for use of mathematical models for tractive effort calculation.
Resumo:
Cover crops are important for improving soil quality. However, soil properties usually have some spatial dependence. Thus, this study aimed to evaluate the effect of winter cover crops on physical properties of soil and soybean yields using thematic maps. Five winter treatments were used: black oats; intercropping 1 (forage turnips and black oats); intercropping 2 (forage turnips, black oats and common vetch); wheat; and control. Macroporosity, microporosity, total porosity, bulk density and water content of the soil from 0 - 0.1 m depths were evaluated after the winter cover crop management. Soybeans were sown over the entire area in the summer after the winter cover crop management, and the soybean yield was determined for each treatment. Maps for each treatment were created and compared to the control treatment using the relative deviation coefficient (RDC). The cover crops improved the total macroporosity of the soil in some regions of the study area. The black oats were more efficient at maintaining higher water content of the soil, and it can be used to decrease the bulk density.
Resumo:
The irrigation is a technique developed to supply the hydric needs of the plants. The use of the water should be optimized so that the culture just has enough for its growth, avoiding waste. The objective of this work was to characterize the behavior of capacitive sensors of humidity to monitor the moisture in the soils. In first instance, it was appraised sensors with dielectric built of synthetic pomes stone (Rd = 0,4 and Rd = 0,8) and of soil samples (Rd = 0,8 and Rd = 1,0), being the Rd parameter a geometric factor that relates the distance between the capacitor plates with radius of the plates. For the calibration, the sensors were installed in PVC recipient of cylindrical shape, filled with soil. The set (sensor and soil) was humidified by capillary effect and submitted by a natural drying very slowly. The parameter readings were taken daily, which allowed obtain the curves relating the humidity percentage, expressed in terms of dry weight, with the output voltage fort the sensor. The experiments were performed in sand soil and in dark red latossolo. The obtained results allowed to infer that the behavior of the sensor has a specific feature for each type of soil, being, therefore, necessary to develop a own calibration curve for the sensor, when used in soil with specific characteristic.
Resumo:
Larsmo-Öjasjön i Österbotten skapades genom invallningar på 1960-talet pga. industrins behov av sötvatten. Sedan dess har vattenområdet drabbats av återkommande försurning och fiskdöd, och invallningen har ofta beskyllts för problemen. Avhandlingen undersöker syrabelastningen i området; bl.a. hur markanvändning, hydrologi och klimatförändringen påverkar belastningen. Konsekvenserna undersöks med fiskyngel som bioindikator, och olika miljömetoder testas och diskuteras. Ökad kunskap om försurningen hjälper oss att tillämpa effektiva miljömetoder och få förbättrad vattenkvalitet i framtiden. Den primära orsaken till den försämrade vattenkvaliteten under de senaste 40 åren är intensiv dikning av svavelrika sediment. Detta leder till oxidering av svavlet till svavelsyra och uppkomst av sura sulfatjordar. Syran löser upp mängder med toxiska metaller som spolas ut i vattendragen. Undersökningen visar att tiotusentals ton svavelsyra tillsammans med stora mängder metaller rinner till Larsmo-Öjasjön per år från sura sulfatjordar. Åarna bidrar med mest belastning, men den sammanlagda belastningen från de otaliga dikena och bäckarna är oväntat stor. Andra potentiella källor till försurningen, t.ex. muddringar och humussyror, beräknas vara obetydliga. Syra- och metallbelastningen varierar kraftigt med hydrologin, dvs. störst belastning sker under vår- och höstflöden. En eventuell klimatförändring kan ändra på avrinningsmönstret och orsaka mera belastning vintertid. Den årligt återkommande syra- och metallbelastningen kan ofta hindra lakens förökning, vilket kan ha större långtgående konsekvenser för fiskpopulationerna än de relativt sällsynta stora surchockerna med synlig fiskdöd. För att förebygga skador på vattendragen bör man undvika att dränera svavelrika sedimenten. På redan existerande sura sulfatjordar visade sig kontroll av grundvattennivån kunna möjliggöra en effektiverad markanvändning utan märkbart ökade miljökonsekvenser.
Resumo:
Atrazine persistence in soils of the southeast of Buenos Aires Province, was studied by an oat bioassay. Atrazine doses of 0.58, 1.16, and 2.32 mg.g-1 dry soil weight (DSW) were applied to pots containing soils from Balcaree, A. Gonzáles Chaves and San Cayetano sites, whose organic matter (OM) content of soils were 5.70, 5.15, and 3,84%, respectively. Avena sativa cv. Millauquén plants were grownth in the pots under greenhouse conditions at different times after atrazine application. Shoots were evenly cut above the soil and dry weight determined as a measure of plant growth. Plants grown in non-sprayed soil were used as controls. Relative dry weight (RDW) of shoots was calculated as percentage of control. Atrazine phytotoxicity was expressed in terms of 50 % plant growth reduction (GR50) in the soils under study. Herbicide persistence was expressed in terms of days after treatment (DAT) needed for the plant to achieve 80% of RDW. Atrazine GR50 values of 0.30, 0.64, and 0.90 mg.g-1 DSW in soils from San Cayetano, Balcare and A.G. Chaves, were respectively obtained at 42 DAT. Herbicide persistences at the recommended dose (1.16 mg.g-1) were 100, 143, and 221 DAT for A.G. Chaves, Balcarce and San Cayetano soils, respectively. San Cayetano soil had both the lowest OM content and cation exchange capacity (CEC), as well as the highest pH, of all the soil studied here. These results were consistent with both the lowest GR50 and the highest persistence abtained for atrazine in this soil.
Resumo:
The objective of this study was to optimize and validate the solid-liquid extraction (ESL) technique for determination of picloram residues in soil samples. At the optimization stage, the optimal conditions for extraction of soil samples were determined using univariate analysis. Ratio soil/solution extraction, type and time of agitation, ionic strength and pH of extraction solution were evaluated. Based on the optimized parameters, the following method of extraction and analysis of picloram was developed: weigh 2.00 g of soil dried and sieved through a sieve mesh of 2.0 mm pore, add 20.0 mL of KCl concentration of 0.5 mol L-1, shake the bottle in the vortex for 10 seconds to form suspension and adjust to pH 7.00, with alkaline KOH 0.1 mol L-1. Homogenate the system in a shaker system for 60 minutes and then let it stand for 10 minutes. The bottles are centrifuged for 10 minutes at 3,500 rpm. After the settlement of the soil particles and cleaning of the supernatant extract, an aliquot is withdrawn and analyzed by high performance liquid chromatography. The optimized method was validated by determining the selectivity, linearity, detection and quantification limits, precision and accuracy. The ESL methodology was efficient for analysis of residues of the pesticides studied, with percentages of recovery above 90%. The limits of detection and quantification were 20.0 and 66.0 mg kg-1 soil for the PVA, and 40.0 and 132.0 mg kg-1 soil for the VLA. The coefficients of variation (CV) were equal to 2.32 and 2.69 for PVA and TH soils, respectively. The methodology resulted in low organic solvent consumption and cleaner extracts, as well as no purification steps for chromatographic analysis were required. The parameters evaluated in the validation process indicated that the ESL methodology is efficient for the extraction of picloram residues in soils, with low limits of detection and quantification.
Resumo:
The objective of this work was to determine the coefficients of sorption and desorption of picloram in Ultisol (PVA) and Oxisol (LVA), displaying different physical and chemical characteristics. Samples of soil were collected at the 0 20 cm depth in degraded pasture areas in Viçosa-MG. Firstly, the equilibrium time between the herbicide in solution and the herbicide which was sorbed in the soil was determined by the Batch Equilibrium method. The time required was 24 hours. Sorption and desorption studies were carried out under controlled laboratory conditions; the sorption evaluation consisted in adding 10.0 mL of herbicide solutions at different concentrations to tubes containing 2.00 g of soil, with vertical rotary agitation being maintained during the pre-determined equilibrium time. After centrifugation, supernatant extract cleaning and filtration, herbicide concentration was determined by high performance liquid chromatography (HPLC) with UV detection at 254 nm. Desorption was evaluated using the samples in the tubes after the sorption tests. The Freundlich model was used for interpretation of the sorption process. Ultisol showed higher adsorption coefficient (Kf a) compared with Oxisol, which may be attributed to the lower pH of the soil and its higher organic matter content. Desorption process occurred in both soils; the LVA allowed greater release of the previously sorbed molecules.
Resumo:
The study of the dynamics of a herbicide in the soil focus on the interactions with environmental components to obtain agronomic efficiency, ensuring selectivity to the culture and risk reduction of environmental impact. This study evaluated the sorption process of fomesafen in the Brazilian soils Ultisol, Cambisol, and Organosol. Besides soil, washed sand was used as an inert material for determination of the sorption ratio of fomesafen in the soil. The bioassay method was applied, using Sorghum vulgare plants as bio-indicator of herbicide presence. Plant poisoning evaluation and harvest for dry matter determination were carried out 21 days after sorghum sowing. To calculate C50, the nonlinear log-logistic model was applied and sorption ratios of the herbicide were obtained in different soils. The decreasing sorption ratio of formesafen in the soils was: Organosol > Ultisol > Cambisol. It was concluded that the contents of organic matter and clay in the soils were the attributes that most influenced fomesafen sorption.
Resumo:
The objective of this study was to evaluate oxadiazon sorption in different soils of the Brazilian Cerrado, highlighting the correlations of lethal doses of this herbicide capable of inhibiting 50% of the dry matter accumulation of the bio-indicator (LD50) among the chemical characteristics of the soil and its direct and indirect effects. The experiment was carried out in a greenhouse in a randomized block design and four repetitions. Each experimental unit consisted of a pot with increasing rates of oxadiazon and oat (Avena sativa), as the bio-indicator species. For sorption evaluation, washed sand and 22 soils (substrates) from Cerrado Brazilian's Alliaceae cultivated areas were used. LD50 and sorption ratio (SR) = [(LD50soil - LD50sand)/LD50sand] to the substrates were determined. Pearson correlation analysis was performed between the chemical characteristics of the substrates and the LD50 of oxadiazon. A path analysis was quantified, to deploy only the significant correlations estimated in direct and indirect effects of the characters on LD50, which is a basic variable. A more pronounced LD50 (528.09 g ha-1) for the Cerrado soil sample resulted in higher SR (> 53.00), while in the washed sand substrate, LD50 corresponded only to 9.74 g ha-1 of the oxadiazon (available in soil). It was concluded that oxadiazon sorption is influenced by the chemical characteristics of the soils, highlighting the correlation with pH (CaCl2), magnesium content, aluminum, organic matter, organic carbon, and aluminum saturation.
Resumo:
A study was conducted to evaluate the sorption and desorption of 14C herbicide saflufenacil (pyrimidinedione) in two soils in the State of São Paulo, classified as Red Yellow Latosol with clayey texture (LVA-1) and medium texture (LVA-2), using the batch method through isotherms. The soils were air dried and sieved a 2 mm mesh. The radioactivity was determined by liquid scintillation spectrometry in acclimatized room (25 ± 2 °C). Sorption isotherms were conducted for 5 concentrations of saflufenacil (5.0; 2.5; 1.0; 0.5 and 0.05 μg mL-1) and the results were adjusted to the Freundlich equation, thus obtaining the parameters of sorption followed by two extractions with 0.01 M CaCl2 to determine desorption parameters similarly to sorption. The results showed that saflufenacil sorption was low for both soils studied, being greater for the LVA with higher organic matter content. The desorption coefficients were greater than their sorption coefficients, suggesting the occurrence of hysteresis. The sorption and desorption isotherms (classified as type C isotherms), hysteresis and the t-test between the angular coefficient of the respective isotherms showed that both the sorption and desorption occur with equal intensity.
Resumo:
Imidazolinone herbicides present physicochemical characteristics that allow them to persist longer in environment, with increased chances of soil and water contamination, as well as carryover effects on subsequent crops. Phytoremediation is shown as a promising technique to decontaminate soils polluted by herbicides. The aim of this study was to assess the potential of some winter grown species in removing residuals from soils contaminated with imazethapyr + imazapic and imazapic + imazapyr, using pre-emergence to control weeds in summer grown rice fields. The experiment was conducted in a completely randomized design, with four replications. All species were subjected to herbicide application at different doses. Imazethapyr + imazapic and imazapyr + imazapic were applied at doses of 0.0, 1.0 and 2.0 L ha-1, and 0.0, 140 and 280 g ha-1, respectively, in pre-emergence of the species. Brassica napus and Festuca arundinaceae are not tolerant to herbicides, with 100% of phytotoxicity (plant death) for all doses assessed. The herbicide imazapyr + imazapic proved to be less selective, causing the highest phytotoxicity in the species tested. The most tolerant species to the herbicides was Vicia sativa, which may be the most suitable one for phytoremediation programs in areas contaminated with imazethapyr + imazapic and imazapyr + imazapic.
Resumo:
Weeds interfere dramatically in the productive potential of cassava; however, information regarding herbicides that are selective to crops is still scarce. Thus, the aim in this study was to assess the initial growth of IAC 90 cassava plants after the application of sulfentrazone at different stages of germination of cassava in clayey and sandy soils. Three experiments were simultaneously deployed: the first experiment consisted in the application of sulfentrazone in the non-germinated stage of cassava cuttings; the second one in the stage of germinated cassavas cuttings (0.9 cm shoots); and the third one in applications in the stage of cassava cuttings with buds emerging (6.5 cm shoots and emerging from the soil). For each experiment the experimental design in randomized blocks was used in the 2 x 5 factorial arrangement with four replications. The factors were composed of two soils (sandy and clayey) and five doses of sulfentrazone (0, 250, 500, 750 and 1,000 g ha-1). It was found that depending on the herbicide dose, development stage of the buds of cassava cuttings and the type of soil, damage can occur in the initial development of the IAC 90 cassava plants. The greatest potential of sulfentrazone selectivity has occurred in applications in the non-germinated cassava cuttings stage and in doses lower than 500 g ha-1 in the clayey soil.
Resumo:
ABSTRACT The objective of this study was to evaluate the availability of herbicides clomazone and tebuthiuron in the solution in different kinds of soils saturated with water or vinasse. Samples of 30 soils with different characteristics were arranged on trays to the herbicides spraying. Then they were homogenized, placed in plastic cartridges and saturated with deionized water or vinasse, and remaining at rest during 18 hours. Two extractions were made, the first one quantified the presence of the herbicides in the soil solution and in the second one the total extraction of herbicide remaining in the soil was taken to determine the recovery percentage of each herbicide tested. For quantification, a LC-MS/MS system was used, a compound of a high performance liquid chromatograph (HPLC) coupled to a triple quadruple mass spectrometer. Tebuthiuron was more available in the soil with the vinasse addition when compared to water. Vinasse applications resulted in no significant difference in availability of clomazone between treatments. Tebuthiuron showed the highest availability frequencies, and on average of all samples 32.49% were extracted from total herbicide applied, while for clomazone this value was 16.50%.
Resumo:
ABSTRACT Weeds have the potential to dramatically interfere in cassava cultivation, reducing its productive potential; however, there are few studies on the selective herbicides in this crop. Therefore, the objective was to evaluate in this work the selectivity and efficiency of sulfentrazone in cassava crops grown in sandy and clayey soils. Two experiments were carried out: The first one was carried out in sandy soil conditions in the conventional system; and the second one was carried out in clayey soil conditions in the no-tillage system. The experimental design was a randomized block with four replications. The treatments consisted in doses of 250, 500, 750 and 1,000 g ha-1 of sulfentrazone, and weeded and non-weeded controls. Sulfentrazone application in cassava crops has linearly reduced the production of roots in a proportion of 0.0153 and 0.0107 t ha-1 at each increment in grams of the active ingredient, respectively. It was concluded that sulfentrazone was not selective for cassava crops grown both in sandy and in clayey soil; however, it was highly effective in weed control in both soils.
Resumo:
Sulfentrazone leaching potential is dependent on soil properties such as strength and type of clay, organic matter content and pH, and may result in ineffectiveness of the product and contamination of groundwater. The objective of this study was to evaluate sulfentrazone leaching in five soils of the sugarcane region in the Northeast Region of Brazil, with different physical and chemical properties, by means of bioassay and high-performance liquid chromatography (HPLC) resolution. The experiment was conducted in a split plot in a completely randomized design. The plots had PVC columns with a 10 cm diameter and being 50 cm deep, filled with five different soil classes (quartzarenic neosol, haplic cambisol, yellowish-red latosol, yellowish-red acrisol, and haplic gleysol), and subplots for 10 depths in columns, 5 cm intervals. On top of the columns, sulfentrazone application was conducted and 12 hours later there was a simulated rainfall of 60 mm. After 72 hours, the columns were horizontally placed and longitudinally open, divided into sections of 5.0 cm. In the center of each section of the columns, soil samples were collected for chromatographic analyses and sorghum sowing was carried out as an indicator plant. The bioassay method was more sensitive to detect the presence of sulfentrazone in an assessment for chromatography soil, having provided greater herbicide mobility in quartzarenic neosol and yellowish-red latosol, whose presence was detected by the indicator plant to a depth of 45 and 35 cm, respectively. In the other soils, sulfentrazone was detected up to 20 cm deep. The intense mobility of sulfentrazone in quartzarenic neosol may result in herbicide efficiency loss in the soil because the symptoms of intoxication and the amount of herbicide detected via silica were highest between 15 cm and 35 cm depth regarding the soil surface layer (0-10 cm), indicating that sulfentrazone should be avoided in soils with such characteristics.