956 resultados para Cold-formed Steel structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic emission technique has become a significant and powerful structural health monitoring tool for structures. Researches to date have been done on crack location, fatigue crack propagation in materials and severity assessment of failure using acoustic emission technique. Determining severity of failure in steel structures using acoustic emission technique is still a challenge to accurately determine the relationship between the severity of crack propagation and acoustic emission activities. In this study three point bending test on low carbon steel samples along with acoustic emission technique have been used to determine crack propagation and severity. A notch is introduced at the tension face of the loading point to the samples to initiate the crack. The results show that the percentage of load drop of the steel specimen has a reciprocal relationship with the crack opening i.e. crack opening zones are influenced by the loading rate. In post yielding region, common acoustic emission signal parameters such as, signal strength, energy and amplitudes are found to be higher than those at pre-yielding and at yielding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire resistance of cold-formed light gauge steel frame (LSF) wall systems is enhanced by lining them with single or multiple layers of wall boards with varying thermal properties. These wall boards are gypsum plasterboards or Magnesium Oxide (MgO) boards produced by different manufacturers. Thermal properties of these boards appear to show considerable variations and this can lead to varying fire resistance levels (FRL) for their wall systems. Currently FRLs of wall systems are determined using full scale fire tests, but they are time consuming and expensive. Recent research studies on the fire performance of LSF wall systems have used finite element studies to overcome this problem, but they were developed based on 1-D and 2-D finite element platform capable of performing either heat transfer or structural analysis separately. Hence in this research a 3-D finite element model was developed first for LSF walls lined with gypsum plasterboard and cavity insulation materials. Accurate thermal properties of these boards are essential for finite element modelling, and thus they were measured at both ambient and elevated temperatures. This experimental study included specific heat, relative density and thermal conductivity of boards. The developed 3-D finite element model was then validated using the available fire tests results of LSF walls lined with gypsum plasterboard, and is being used to investigate the fire performance of different LSF wall configurations. The tested MgO board exhibited significant variations in their thermal properties in comparison to gypsum plasterboards with about 50% loss of its initial mass at about 500 ºC compared to 16% for gypsum plasterboards. Hence the FRL of MgO board lined LSF wall systems is likely to be significantly reduced. This paper presents the details of this research study on the fire performance of LSF wall systems lined with gypsum plasterboard and MgO board including the developed 3-D finite element models, thermal property tests and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of alkyl 2-deoxy-alpha-D-arabino-hexopyranosides, with the alkyl chain lengths from C-8 to C-18, are established by the single crystal X-ray structural determination. The even-alkyl chain length derivatives crystallized orthorhombic, with space group P2(1)2(1)2(1), whereas the odd-alkyl chain length derivatives crystallized monoclinic, with space group P2(1). The sugar moieties retained a C-4(1) chair conformation and the conformation of the alkyl chains was all-trans. The molecules formed a bilayer structure, in which alkyl chains were interdigitated.The hydrogen bonds, originating from the sugar moieties, were observed in adjacent layers and also within the same layer, resulting in the formation of infinite chains. The alkyl chains arranged parallel to each other and formed planar structures. The thermal properties of the alkyl 2-deoxy glucosides were analyzed further. It was observed that none of the derivatives exhibited mesomorphism. This study establishes that the absence of the hydroxyl group at C-2 of the sugar moiety results in a non-mesogenic nature of the alkyl 2-deoxy-alpha-D-glycosides, as opposed to the profound mesogenic nature of the normal alkyl glycosides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on corrosion of steel structures in various marine environments is essential to assure the safety of structures and can effectively prolong their service life. In order to provide data for anticorrosion design of oil exploitation structures in the Bohai Bay, the corrosion behaviour and properties of steel in beach soil, using typical steel samples (Q235A carbon steel and API 5Lx52 pipeline steel) buried 0.5, 1.0 and 1.5 m deep under typical beach soils in Tanggu, Yangjiaogou, Xingcheng, Yingkou and Chengdao for 1-2 years were studied. The carbon steel and pipeline steel were both corroded severely in the beach soil, with the form of corrosion being mainly uniform with some localised attack (pitting corrosion). The corrosion rate of the carbon steel was up to 0.16 mm/year with a maximum penetration depth of 0.76 mm and that of the pipeline steel was up to 0.14 mm/year, with a maximum penetration depth of 0.53 mm. Compared with carbon steel, the pipeline steel generally had better corrosion resistance in most test beach soils. The corrosion rates and the maximum corrosion depths of carbon steel and pipeline steel were in the order: Tanggu>Xingcheng>Chengdao>Yingkou>Yangjiaogou with corrosion altering with depth of burial. The corrosion of steel in the beach soil involves a mixed mechanism with different degrees of soil aeration and microbial activity present. It is concluded that long term in situ plate laying experiments must be carried out to obtain data on steel corrosion in this beach soil environment so that the effective protection measures can be implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of simulation experiments on carbon steel (A(3) steel) and low alloy steel (16 Mn steel) in marine atmosphere (MA), seawater (SW) and seabed sediment (SBS) including rough sea sand, fine sea sand and seabed mud were carried out indoors for a year or so by means of individually hanging plates (IHP) and electrically connected hanging plates (ECHP). The corrosion of steels in SBS was mainly due to the macrogalvanic cell effect. The steel plates at the bottom of SBS, as the anode of a macrogalvanic cell, showed the heaviest corrosion with a corrosion rate of up to 0.12 mm/a, approximately equal to that of steel plates in marine atmosphere. The test results showed that the corrosion rates of A(3) and 16 Mn steel in marine environment were in the order: MA > SW > SBS by the IHP method; and MA > SBS > SW by the ECHP method. The corrosion rates of steels in the water/sediment interface were directly proportional to the grain size of the SBS by the ECHP method, but those of steels in the water/sediment interface did not vary with the grain size of SBS by the IHP method. The corrosion rate of low-alloy steel was a little higher than that of carbon steel. The results of this study have important applications for design of offshore steel structures such as oil platform, pier, and port.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hot-dipped galvanized zinc and zinc alloy coatings were used as the hot-dipped low alloy zinc coatings (aluminum content less than protective metallic coatings for steel structures in seawater in Chi- or equal to 10 wt%) is equal to or even lower than that of the pure na. Corrosion of the two coatings immersed in sea water in Qingdao zinc sheet, while the performance of the hot-dipped high alloy zinc and Xiamen for 6 years were introduced and analyzed, which pro-coatings is higher than that of the pure zinc sheet. The hot-dipped vides a basis for further development and applications of these coat- high alloy zinc coatings can be further developed for optimal tings in China. Tests proved that the anti-corrosion performance of formance in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is intended to investigate the validity of the stability diagram (SD) aided multivariate autoregressive (MAR) analysis for identifying modal parameters of a real truss bridge. The MAR models are adopted to fit the time series of the dynamic accelerations recorded from a number of observation points on the bridge; then the modal parameters are extracted from the MAR model coefficient matrix. The SD is adopted to determine statistically dominant modes. In plotting the SD, a number of stability criteria are further adopted for filtering out those modes with unstable modal parameters. By the present method, the first five modal frequencies and mode shapes are identified with very high precision, while the damping ratios are identified with high precision for the 1st mode but with poorer precision for higher modes. Moreover, the ability of the SD in selecting structural modes without getting involved in any model-order optimization problem is highlighted through a comparison study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of a steel strip rolling process is to produce high quality steel at a desired thickness.  Thickness reduction is the result of the speed difference between the incoming and the outgoing steel strip and the application of the large normal forces via the backup and the work rolls.  Gauge control of a cold rolled steel strip is achieved using the gaugemeter principle that works adequately for the input gauge changes and the strip hardness changes.  However, the compensation of some factors is problematic, for example, eccentricity of the backup rolls.  This cyclic eccentricity effect causes a gauge deviation, but more importantly, a signal is passed to the gap position control so to increase the eccentricity deviation.  Consequently, the required high product tolerances are severely limited by the presence of the roll eccentricity effects.
In this paper a direct model reference adaptive control (MRAC) scheme with dynamically constructed neural controller was used.  The aim here is to find the simplest controller structure capable of achieving an optimal performance.  The stability of the adaptive neural control scheme (i.e. the requirement of persistency of excitation and bounded learning rates) is addressed by using as the inputs to the reference model the plant's state variables.  In such a case, excitation is due to actual plant signals (states) affected by plant disturbances and noise.  In addition, a reference model in the form of a filter with a desired transfer function using Modulus Optimum design was used to ensure variance in the desired dynamic characteristics of the system.  The gradually decreasing learning rate employed by the neural controller in this paper is aimed at eliminating controller instability resulting from over-aggressive control.  The moving target problem (i.e. the difficulty of global neural networks to perfrom several separate computational tasks in closed -loop control) is addressed by the localized architecture of the controller.  The above control scheme and learning algorithm offers a method for automatic discovery of an efficient controller.
The resulting neural controller produces an excellent disturbance rejection in both cases of eccentricity and hardness disturbances, reducing the gauge deviation due to eccentricity disturbance from 33.36% to 4.57% on average, and the gauge deviation due to hardness disturbance from 12.59% to 2.08%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the high requirements of civil infrastructures against the earthquake in Japan, a great number of research organizations have been conducting the structural steel experiments, in particular the seismic tests such as the cyclic loading test and the pseudo-dynamic test, for many years to determine the seismic performances of steel structures. However, the original test data gained by most research organizations are not well stored in an appropriate manner for distribution and possible usage of others. Although a Numerical Database of Steel Structures (NDSS) was developed some years ago to preserve and share experimental data of the ultimate strength tests acquired at Nagoya University, it was not easy to access this database from other computer platform due to the lack of the support of proper communication media. With the rapid development of information networks and their browsers, structural engineers and researchers are able to exchange various types of test data through Internet. This paper presents the development of a distributed collaborative database system for structural steel experiments. The database is made available on the World-Wide Web, and the Java language enables the interactive retrieval efficiently. The applications of the developed database system for the retrieval of experimental data and seismic numerical analysis are validated in the form of examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focussed on how tubular steel structures similar to that in frontal car frames deform under crash conditions. The novelty comes from finding three crash modes: axial crush, transitional and global bending. Each mode was categorised by reaction force and energy absorption, this allowing for better structural design practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural condition monitoring methods can be generally classified as local and global. While the global method needs only a small number of sensors to measure the low-frequency structural vibration properties, the acquired information is often not sufficiently sensitive to minor damages in a structure. Local methods, on the other hand, could be very sensitive to minor damages but their detection range is usually small. To overcome the drawbacks and take advantage of both methods, an integrated condition monitoring system has been recently developed for structural damage detection, which combines guided wave and structural vibration tests. This study aims at finding a viable damage identification method for steel structures by using this system. First, a spectral element modelling method is developed, which can simulate both wave propagation and structural vibration properties. Then the model is used in updating analysis to identify crack damage. Extensive numerical simulations and model updating works are conducted. The experimental and numerical results suggest that simply combining the objective functions cannot provide better structural damage identification. A two-stage damage identification scheme is more suitable for identifying damage in steel beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT
This paper addresses the strain ageing effects on the mechanical properties of the partially damaged structural mild steel. Since repairing partly damaged structures may not occur immediately, the strain ageing effect can significantly influence the structural behaviour. The changes due to this effect have not so far been considered in the civil engineering design guidelines. In order to investigate strain ageing effects, two-stage experimental tests are carried out on the mild-steel specimens. In the first stage, partial damage is made using quasi-static loading. During the second stage, the strength and ductility of the specimens are examined after 2 and 7 days ‘ageing’ at room temperature and the results are compared with the corresponding no-age samples. The microstructure of the specimens is examined using scanning electron microscopy (SEM). To illustrate the effect of strain ageing on the global behaviour of steel structures, a numerical example is provided in which strain ageing impacts on loading capacity and deflection of a steel beam. Finally, the stress–strain relation of partially damaged mild-steel material incorporating strain ageing effects is expressed by calibrating the parameters of Ramberg–Osgood model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On a quiet Sunday afternoon in January 2015, a 12 year old girl was assaulted in Geelong’s Market Square mall. The attack sparked a media furore over what should be done to address the ongoing safety and amenity issues of this intractable public space. The city’s mayor, Cr Darryn Lyons, responded to the situation by declaring the mall a ‘haunt for bogans and scumbags’ and renewed calls for its demolition. Such rhetoric highlights the exclusionary mindset that casts certain types of people as undesirable inhabitants of public spaces. It also bolsters negative public perceptions of the mall. Once formed, such attitudes are difficult to shift, despite an overall improvement in the area’s crime rates over recent years. Poor perceptions are further reinforced by the soulless nature of the mall’s built fabric and weak urban interfaces. Its formal language is one of hostility, not only towards would-be delinquents, but to all people. The space is furnished with cold stainless steel seats, CCTV cameras and limp, pavement water spouts, while its inactive edges consist of loading bays, security grilles and neglected facades. This paper considers how a more inclusive architecture might be utilised to create a kinder, more generous physical environment that reflects the public nature of the space. While not a quick fix, fostering an architecture that encourages a more equitable use of the mall may diminish the sense of fear, anxiety and suspicion that the space currently elicits, tackling the problem at both a structural and social level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)