842 resultados para Cloth simulation, involucro, mongolfiera
Resumo:
Hem realitzat l’estudi de moviments humans i hem buscat la forma de poder crear aquests moviments en temps real sobre entorns digitals de forma que la feina que han de dur a terme els artistes i animadors sigui reduïda. Hem fet un estudi de les diferents tècniques d’animació de personatges que podem trobar actualment en l’industria de l’entreteniment així com les principals línies de recerca, estudiant detingudament la tècnica més utilitzada, la captura de moviments. La captura de moviments permet enregistrar els moviments d’una persona mitjançant sensors òptics, sensors magnètics i vídeo càmeres. Aquesta informació és emmagatzemada en arxius que després podran ser reproduïts per un personatge en temps real en una aplicació digital. Tot moviment enregistrat ha d’estar associat a un personatge, aquest és el procés de rigging, un dels punts que hem treballat ha estat la creació d’un sistema d’associació de l’esquelet amb la malla del personatge de forma semi-automàtica, reduint la feina de l’animador per a realitzar aquest procés. En les aplicacions en temps real com la realitat virtual, cada cop més s’està simulant l’entorn en el que viuen els personatges mitjançant les lleis de Newton, de forma que tot canvi en el moviment d’un cos ve donat per l’aplicació d’una força sobre aquest. La captura de moviments no escala bé amb aquests entorns degut a que no és capaç de crear noves animacions realistes a partir de l’enregistrada que depenguin de l’interacció amb l’entorn. L’objectiu final del nostre treball ha estat realitzar la creació d’animacions a partir de forces tal i com ho fem en la realitat en temps real. Per a això hem introduït un model muscular i un sistema de balanç sobre el personatge de forma que aquest pugui respondre a les interaccions amb l’entorn simulat mitjançant les lleis de Newton de manera realista.
Resumo:
In this work we present numerical simulations of continuous flow left ventricle assist device implantation with the aim of comparing difference in flow rates and pressure patterns depending on the location of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly chosen to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular tree. With the aim of assessing the differences between these two approaches and device rotational speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one-dimensional models where we account for the presence of an outflow cannula anastomosed to different locations of the aorta. Then, we use the resulting network to compare the results of the two different cannulations for several stages of heart failure and different rotational speed of the device. The inflow boundary data for the heart and the cannulas are obtained from a lumped parameters model of the entire circulatory system with an assist device, which is validated with clinical data. The results show that ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in all the considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has an important impact on wave profiles; this effect is more pronounced at high RPM.
Resumo:
The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
Resumo:
The pharmacokinetic determinants of successful antibiotic prophylaxis of endocarditis are not precisely known. Differences in half-lives of antibiotics between animals and humans preclude extrapolation of animal results to human situations. To overcome this limitation, we have mimicked in rats the amoxicillin kinetics in humans following a 3-g oral dose (as often used for prophylaxis of endocarditis) by delivering the drug through a computerized pump. Rats with catheter-induced vegetations were challenged with either of two strains of antibiotic-tolerant viridans group streptococci. Antibiotics were given either through the pump (to simulate the whole kinetic profile during prophylaxis in humans) or as an intravenous bolus which imitated only the peak level of amoxicillin (18 mg/liter) in human serum. Prophylaxis by intravenous bolus was inoculum dependent and afforded a limited protection only in rats challenged with the minimum inoculum size infecting > or = 90% of untreated controls. In contrast, simulation of kinetics in humans significantly protected animals challenged with 10 to 100 times the inoculum of either of the test organisms infecting > or = 90% of untreated controls. Thus, simulation of the profiles of amoxicillin prophylaxis in human serum was more efficacious than mere imitation of the transient peak level in rats. This confirms previous studies suggesting that the duration for which the serum amoxicillin level remained detectable (not only the magnitude of the peak) was an important parameter in successful prophylaxis of endocarditis. The results also suggest that single-dose prophylaxis with 3 g of amoxicillin in humans might be more effective than predicted by conventional animal models in which only peak levels of antibiotic in human serum were stimulated.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.
Resumo:
Le modèle développé à l'Institut universitaire de médecine sociale et préventive de Lausanne utilise un programme informatique pour simuler les mouvements d'entrées et de sorties des hôpitaux de soins généraux. Cette simulation se fonde sur les données récoltées de routine dans les hôpitaux; elle tient notamment compte de certaines variations journalières et saisonnières, du nombre d'entrées, ainsi que du "Case-Mix" de l'hôpital, c'est-à-dire de la répartition des cas selon les groupes cliniques et l'âge des patients.
Resumo:
OBJECTIVES: Human papillomavirus (HPV) is a sexually transmitted infection of particular interest because of its high prevalence rate and strong causal association with cervical cancer. Two prophylactic vaccines have been developed and different countries have made or will soon make recommendations for the vaccination of girls. Even if there is a consensus to recommend a vaccination before the beginning of sexual activity, there are, however, large discrepancies between countries concerning the perceived usefulness of a catch-up procedure and of boosters. The main objective of this article is to simulate the impact on different vaccination policies upon the mid- and long-term HPV 16/18 age-specific infection rates. METHODS: We developed an epidemiological model based on the susceptible-infective-recovered approach using Swiss data. The mid- and long-term impact of different vaccination scenarios was then compared. RESULTS: The generalization of a catch-up procedure is always beneficial, whatever its extent. Moreover, pending on the length of the protection offered by the vaccine, boosters will also be very useful. CONCLUSIONS: To be really effective, a vaccination campaign against HPV infection should at least include a catch-up to early reach a drop in HPV 16/18 prevalence, and maybe boosters. Otherwise, the protection insured for women in their 20s could be lower than expected, resulting in higher risks to later develop cervical cancer.
Resumo:
The dynamic properties of helix 12 in the ligand binding domain of nuclear receptors are a major determinant of AF-2 domain activity. We investigated the molecular and structural basis of helix 12 mobility, as well as the involvement of individual residues with regard to peroxisome proliferator-activated receptor alpha (PPARalpha) constitutive and ligand-dependent transcriptional activity. Functional assays of the activity of PPARalpha helix 12 mutants were combined with free energy molecular dynamics simulations. The agreement between the results from these approaches allows us to make robust claims concerning the mechanisms that govern helix 12 functions. Our data support a model in which PPARalpha helix 12 transiently adopts a relatively stable active conformation even in the absence of a ligand. This conformation provides the interface for the recruitment of a coactivator and results in constitutive activity. The receptor agonists stabilize this conformation and increase PPARalpha transcription activation potential. Finally, we disclose important functions of residues in PPARalpha AF-2, which determine the positioning of helix 12 in the active conformation in the absence of a ligand. Substitution of these residues suppresses PPARalpha constitutive activity, without changing PPARalpha ligand-dependent activation potential.
Resumo:
This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.
Resumo:
Purpose: To investigate the effect of incremental increases in intraocular straylight on threshold measurements made by three modern forms of perimetry: Standard Automated Perimetry (SAP) using Octopus (Dynamic, G-Pattern), Pulsar Perimetry (PP) (TOP, 66 points) and the Moorfields Motion Displacement Test (MDT) (WEBS, 32 points).Methods: Four healthy young observers were recruited (mean age 26yrs [25yrs, 28yrs]), refractive correction [+2 D, -4.25D]). Five white opacity filters (WOF), each scattering light by different amounts were used to create incremental increases in intraocular straylight (IS). Resultant IS values were measured with each WOF and at baseline (no WOF) for each subject using a C-Quant Straylight Meter (Oculus, Wetzlar, Germany). A 25 yr old has an IS value of ~0.85 log(s). An increase of 40% in IS to 1.2log(s) corresponds to the physiological value of a 70yr old. Each WOFs created an increase in IS between 10-150% from baseline, ranging from effects similar to normal aging to those found with considerable cataract. Each subject underwent 6 test sessions over a 2-week period; each session consisted of the 3 perimetric tests using one of the five WOFs and baseline (both instrument and filter were randomised).Results: The reduction in sensitivity from baseline was calculated. A two-way ANOVA on mean change in threshold (where subjects were treated as rows in the block and each increment in fog filters was treated as column) was used to examine the effect of incremental increases in straylight. Both SAP (p<0.001) and Pulsar (p<0.001) were significantly affected by increases in straylight. The MDT (p=0.35) remained comparatively robust to increases in straylight.Conclusions: The Moorfields MDT measurement of threshold is robust to effects of additional straylight as compared to SAP and PP.