963 resultados para Clay dispersion
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mixtures of dioctadecyldimethylammonium chloride (DODAC) cationic vesicle dispersions with aqueous micelle solutions of the anionic sodium cholate (NaC) were investigated by differential scanning calorimetry, DSC, turbidity and light scattering. Within the concentration range investigated (constant 1.0 mM DODAC and varying NaC concentration up to 4 mM), vesicle -> micelle -> aggregate transitions were observed. The turbidity of DODAC/NaC/water depends on time and NaC/DODAB molar concentration ratio R. At equilibrium, turbidity initially decreases smoothly with R to a low value (owing to the vesicle-micelle transition) when R = 0.5-0.8 and then increases steeply to a high value (owing to the micelle-aggregate transition) when R = 0.9-1.0. DSC thermograms exhibit a single and sharp endothermic peak at T-m approximate to 49 degrees C, characteristic of the melting temperature of neat DODAC vesicles in water. Upon addition of NaC, T-m initially decreases to vanish around R = 0.5, and the main transition peak broadens as R increases. For R > 1.0 two new (endo- and exothermic) peaks appear at lower temperatures indicating the formation of large aggregates since the dispersion is turbid. All samples are non-birefringent. Dynamic light scattering (DLS) data indicate that both DODAC and DODAC/NaC dispersions are highly polydisperse, and that the mean size of the aggregates tends to decrease as R increases. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Using the numerical solution of the nonlinear Schrodinger equation and a variational method it is shown that (3 + 1)-dimensional spatiotemporal optical solitons can be stabilized by a rapidly oscillating dispersion coefficient in a Kerr medium with cubic nonlinearity. This has immediate consequence in generating dispersion-managed robust optical soliton in communication as well as possible stabilized Bose-Einstein condensates in periodic optical-lattice potential via an effective-mass formulation. We also critically compare the present stabilization with that obtained by a rapid sinusoidal oscillation of the Kerr nonlinearity parameter.
Resumo:
Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding energy for any fermion number density and all coupling assuming a,generic pairwise residual interfermion interaction. Also considered are Cooper pairs (CP's) with nonzero center-of-mass momentum (CMM) and their binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent linear term in the CMM dominates the pair excitation energy in weak coupling (also called the BCS regime) while the more familiar quadratic term prevails in strong coupling (the Bose regime). The crossover, though strictly unrelated to BCS theory per se, is studied numerically as it is expected to play a central role in a model of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all dimensionality d less than or equal to 2 for quadratic dispersion, but is nonzero for all d greater than or equal to 1 for linear dispersion.
Resumo:
Cooper pairing is studied in three dimensions to determine its binding energy for all coupling using a general separable interfermion interaction. Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM). A coupling-independent linear term in the CMM dominates the pair excitation energy in weak coupling and/or high fermion density, while the more familiar quadratic term prevails only in the extreme low-density (i.e., vacuum) limit for any nonzero coupling. The linear-to-quadratic crossover of the CP dispersion relation is analyzed numerically, and is expected to play a central role in a model of superconductivity (and superfluidity) simultaneously accommodating a Bardeen-Cooper-Schrieffer condensate as well as a Bose-Einstein condensate of CP bosons. (C) 2001 Elsevier B.V. B,V. All rights reserved.
Resumo:
The Cooper pair binding energy vs. center-of-mass-momentum dispersion relation for Bose-Einstein condensation studies of superconductivity is found in two dimensions for a renormalized attractive delta interaction. It crosses over smoothly from a linear to a quadratic form as coupling varies from weak to strong.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dispersion patterns of the larval planidia of Ormia depleta was studied in circular arenas. After placing 25 larvae in the center of the arena, their angle of distribution and distance travelled was recorded 15 min later. No innate directional orientations were evidenced, nor was evidence found for either positive or negative orientation to point sound and light sources. In all cases, dispersion was bimodal, with most dispersing only 1 cm, and a much smaller peak found at 10 cm. The bimodality of dispersal distances may be a response to the sexual behavior of its host, mole crickets of the genus Scapteriscus.
Resumo:
Horizontal and vertical frequency distribution of larvae in three species of Calliphoridae were studied. Correlation between horizontal and vertical dispersion and larval size was also assessed. The experiment was monitored depositing vials with larvae at one end of a cardboard box covered with wood shavings. Chrysomya megacephala and C., putoria reached 2.9 m from the starting portion of the box. Co. macellaria reached only 2.0 m from the starting portion of the box. The majority of pupae of the three species were found at 4 and 5 cm depth from the surface of the box. Correlation coefficients between pupal size and horizontal and vertical migration were usually very low, and apparently no clear pattern emerges from this data set. This study revealed variation in the dispersion patterns although the two Chrysomya species are more similar in their postfeeding larval behaviour compared to Co. macellaria.
Resumo:
Variance dispersion graphs have become a popular tool in aiding the choice of a response surface design. Often differences in response from some particular point, such as the expected position of the optimum or standard operating conditions, are more important than the response itself. We describe two examples from food technology. In the first, an experiment was conducted to find the levels of three factors which optimized the yield of valuable products enzymatically synthesized from sugars and to discover how the yield changed as the levels of the factors were changed from the optimum. In the second example, an experiment was conducted on a mixing process for pastry dough to discover how three factors affected a number of properties of the pastry, with a view to using these factors to control the process. We introduce the difference variance dispersion graph (DVDG) to help in the choice of a design in these circumstances. The DVDG for blocked designs is developed and the examples are used to show how the DVDG can be used in practice. In both examples a design was chosen by using the DVDG, as well as other properties, and the experiments were conducted and produced results that were useful to the experimenters. In both cases the conclusions were drawn partly by comparing responses at different points on the response surface.
Resumo:
The composite montmorillonite-8-hydroxyquinoline (Swy-1-8-HQ) was prepared by two different processes and studied by using thermogravimetric analysis (TG/DTG and DSC), as well as helpful techniques as fluorescence in the UV-visible region and X-ray diffraction. The composites developed fluorescent appearance, however with quantum poor efficiency and they exhibited distinct TG and DSC thermal behavior. The fluorescence data of spectra associated to the TG/DT curves allowed to suggest that the 8-HQ was present in the composites in two different circumstances: 1 - intercalated in the interlayer spaces (Swy-1-8-HQ2), rigidly associated to the Substrate feasible as a monolayer with the aromatic rings parallel to the silica layer; and/or, 2 - adsorbed on the Surface (Swy-1-8-HQ1), either as a bilayer formation or tilting of the molecules to the silicate layer sheet. All results confirmed above are in agreement with X-ray diffraction patterns, once the interlayer space increases when 8-HQ is incorporated. The experimental results confirm the formation of the composites in agreement with the method used in the preparation.