967 resultados para Cladding of laser glass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning optics create different types of phenomena and limitation to cladding process compared to cladding with static optics. This work concentrates on identifying and explaining the special features of laser cladding with scanning optics. Scanner optics changes cladding process energy input mechanics. Laser energy is introduced into the process through a relatively small laser spot which moves rapidly back and forth, distributing the energy to a relatively large area. The moving laser spot was noticed to cause dynamic movement in the melt pool. Due to different energy input mechanism scanner optic can make cladding process unstable if parameter selection is not done carefully. Especially laser beam intensity and scanning frequency have significant role in the process stability. The laser beam scanning frequency determines how long the laser beam affects with specific place local specific energy input. It was determined that if the scanning frequency in too low, under 40 Hz, scanned beam can start to vaporize material. The intensity in turn determines on how large package this energy is brought and if the intensity of the laser beam was too high, over 191 kW/cm2, laser beam started to vaporize material. If there was vapor formation noticed in the melt pool, the process starts to resample more laser alloying due to deep penetration of laser beam in to the substrate. Scanner optics enables more flexibility to the process than static optics. The numerical adjustment of scanning amplitude enables clad bead width adjustment. In turn scanner power modulation (where laser power is adjusted according to where the scanner is pointing) enables modification of clad bead cross-section geometry when laser power can be adjusted locally and thus affect how much laser beam melts material in each sector. Power modulation is also an important factor in terms of process stability. When a linear scanner is used, oscillating the scanning mirror causes a dwell time in scanning amplitude border area, where the scanning mirror changes the direction of movement. This can cause excessive energy input to this area which in turn can cause vaporization and process instability. This process instability can be avoided by decreasing energy in this region by power modulation. Powder feeding parameters have a significant role in terms of process stability. It was determined that with certain powder feeding parameter combinations powder cloud behavior became unstable, due to the vaporizing powder material in powder cloud. Mainly this was noticed, when either or both the scanning frequency or powder feeding gas flow was low or steep powder feeding angle was used. When powder material vaporization occurred, it created vapor flow, which prevented powder material to reach the melt pool and thus dilution increased. Also powder material vaporization was noticed to produce emission of light at wavelength range of visible light. This emission intensity was noticed to be correlated with the amount of vaporization in the powder cloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser engineering is an area in which developments in the existing design concepts and technology appear at an alarming rate. Now—a-days, emphasis has shifted from innovation to cost reduction and system improvement. To a major extent, these studies are aimed at attaining larger power densities, higher system efficiency and identification of new lasing media and new lasing wavelengths. Todate researchers have put to use all the ditferent Forms of matter as lasing material. Laser action was observed For the first time in a gaseous system - the He-Ne system. This was Followed by a variety of solidstate and gas laser systems. Uarious organic dyes dissolved in suitable solvents were found to lase when pumped optically. Broad band emission characteristics of these dye molecules made wavelength tuning possible using optical devices. Laser action was also observed in certain p-n junctions of semiconductor materials and some of these systems are also tunable. The recent addition to this list was the observation of laser action from certain laser produced plasmas. The purpose of this investigation was to examine the design and Fabrication techniques of pulsed Nitrogen lasers and high power Nd: Glass laserso Attempt was also made to put the systems developed into certain related experiments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er: YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 mu m, a discrete inflammatory response occurred in only one specimen with an RDT of 214 mu m. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 mu m), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 mu m). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface modification and crystallization process of BaO-B2O3-SiO2 glass compositions when exposed to CO2 laser irradiation was evaluated as a function of the laser power, irradiation time and surface condition. The glass surface was modified by the application of laser power exceeding 0.40 W and an irradiation time of more than 300 s. Micro-Raman and X-ray diffraction measurements revealed at high laser power the formation of beta-BaB2O4 (beta-BBO) crystalline phase. The crystallization of the irradiated region was enhanced when beta-BBO micrometer sized particles were dispersed on the surface of the glass sample. The intensity of the second harmonic generation observed in the crystallized region was found to depend mainly on the condition of the glassy surface prior to glass irradiation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-x)(Y(2)O(3))(x)} (0.1 <= x <= 0.25) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as Y-3d core-level X-ray photoelectron spectroscopy, (11)B magic-angle spinning (MAS) NMR spectra reveal that the majority of the boron atoms are three-coordinated, and a slight increase of four-coordinated boron content with increasing x can be noticed. (27)Al MAS NMR spectra show that the alumina species are present in the coordination states four, five and six. All of them are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, nonsegregated glass structure. For the first time, (89)Y solid state NMR has been used to probe the local environment of Y(3+) ions in a glass-forming system. The intrinsic sensitivity problem associated with (89)Y NMR has been overcome by combining the benefits of paramagnetic doping with those of signal accumulation via Carr-Purcell spin echo trains. Both the (89)Y chemical shifts and the Y-3d core level binding energies are found to be rather sensitive to the yttrium bonding state and reveal that the bonding properties of the yttrium atoms in these glasses are similar to those found in the model compounds YBO(3) and YAl(3)(BO(3))(4), Based on charge balance considerations as well as (11)B NMR line shape analyses, the dominant borate species are concluded to be meta- and pyroborate anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To facilitate the design of laser host materials with optimized emission properties, detailed structural information at the atomic level is essential, regarding the local bonding environment of the active ions (distribution over distinct lattice sites) and their extent of local clustering as well as their population distribution over separate micro- or nanophases. The present study explores the potential of solid state NMR spectroscopy to provide such understanding for rare-earth doped lead lanthanum zirconate titanate (PLZT) ceramics. As the NMR signals of the paramagnetic dopant species cannot be observed directly, two complementary approaches are utilized: (1) direct observation of diamagnetic mimics using Sc-45 NMR and (2) study of the paramagnetic interaction of the constituent host lattice nuclei with the rare-earth dopant, using Pb-207 NMR lineshape analysis. Sc-45 MAS NMR spectra of scandium-doped PLZT samples unambiguously reveal scandium to be six-coordinated, suggesting that this rare-earth ion substitutes in the B site. Static Pb-207 spin echo NMR spectra of a series of Tm-doped PLZT samples reveal a clear influence of paramagnetic rare-earth dopant concentration on the NMR lineshape. In the latter case high-fidelity spectra can be obtained by spin echo mapping under systematic incrementation of the excitation frequency, benefiting from the signal-to-noise enhancement afforded by spin echo train Fourier transforms. Consistent with XRD data, the Pb-207 NMR lineshape analysis suggests that statistical incorporation into the PLZT lattice occurs at dopant levels of up to 1 wt.% Tm3+, while at higher levels the solubility limit is reached. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relief Bragg gratings were recorded on the surface of Ga-Ge-S glass samples by interference of two UV laser beams at 351 nm, Scanning force microscopy was used to perform a 3D image analysis of the resulting surface topography, which shows the superposition of an imprinted grating over the base topography of the glass. An important question regarding the efficiency of the grating is to determine to what extent the base topography reduces the intended coherent scattering of the grating because of its stochastic character. To answer this question we separated both base and grating structures by Fourier filtering, examined both spatial frequency and roughness, and determined the correlation. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the microleakage of pit and fissure sealants after different surface preparation (invasive technique and laser irradiation) and the use of different materials (fluoride resin-filled sealant, resin-modified glass ionomer cement and adhesive system). Eighty-four pre molars were used in this study, which were divided into seven groups. After the accomplishment of the different treatments, these were submitted to thermocycling process and assess for microleakage by examination under an epifluorescent microscope and scored zero to seven. Two specimens of each group were observed under scanning electron microscope (SEM). The results showed that laser irradiation did not lessen microleakage in pit and fissures when using a filled-resin sealant with fluoride or a resin-modified glass ionomer cement. The use of laser irradiation and adhesive system, followed by a resin-filled sealant with fluoride, showed the lowest microleakage scores in pit and fissures. Comparing this group to the resin-modified glass ionomer cement group, there was statistical significance. The use of a adhesive system decreased microleakage when using a fluoride resin-filled sealant with or without previous laser irradiation; although it was not statistically significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photosensitivity of GeSx binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8x10−3 and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 – 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency upconversion (UC) processes involving energy transfer (ET) among Nd 3+ and Pr 3+ ions in a fluoroindate glass are reported. In a first experiment, the excitation of Pr 3+ [transition 3H 4→ 1D 2] and of Nd 3+ [transition 4I 9/2→( 2G 7/2+ 4G 5/2)] was achieved with a dye laser operating in the 575-590 nm range. In a second experiment, the Nd 3+ ions were excited with the second harmonic of a Nd: YAG laser at 532 nm. The ET processes leading to UC in both experiments were studied by monitoring the blue fluorescence decay at 480 nm due to the transition 3P 0→ 3H 4 in Pr 3+. In the more relevant UC process, quartets of ions (Nd-Nd-Pr-Pr) are excited due to absorption of three laser photons by two Nd 3+ ions which transfer their energy to two Pr 3+ ions. Each Pr 3+ ion promoted to the 3P 0 level decays to the ground state emitting one photon in the blue region. This conclusion was achieved investigating the dependence of the UC fluorescence intensity as a function of laser intensity, samples concentrations, and temporal behavior of the UC signal. Other UC processes involving nonisoionic groups of three ions are also reported. © 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the infrared-to-visible CW frequency upconversion from planar waveguides based on Er3+-Yb3+-doped 100-xSiO(2)-xTa(2)O(5) obtained by a sol-gel process and deposited onto a SiO2-Si substrate by dip-coating. Surface morphology and optical parameters of the planar waveguides were analyzed by atomic force microscopy and the m-line technique. The influence of the composition on the electronic properties of the glass-ceramic films was followed by the band gap ranging from 4.35 to 4.51 eV upon modification of the Ta2O5 content. Intense green and red emissions were detected from the upconversion process for all the samples after excitation at 980 nm. The relative intensities of the emission bands around 550 nm and 665 nm, assigned to the H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2) transitions, depended on the tantalum oxide content and the power of the laser source at 980 nm. The upconversion dynamics were investigated as a function of the Ta2O5 content and the number of photons involved in each emission process. Based on the upconversion emission spectra and 1931CIE chromaticity diagram, it is shown that color can be tailored by composition and pump power. The glass ceramic films are attractive materials for application in upconversion lasers and near infrared-to-visible upconverters in solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The humidity sensors constructed from polymer optical fiber Bragg gratings (POFBG) respond to the water content change in the fiber induced by varying environmental condition. The water content change is a diffusion process. Therefore the response time of the POFBG sensor strongly depends on the geometry and size of the fiber. In this work we investigate the use of laser micromachining of D-shaped and slotted structures to improve the response time of polymer fiber grating based humidity sensors. A significant improvement in the response time has been achieved in laser micromachined D-shaped POFBG humidity sensors. The slotted geometry allows water rapid access to the core region but this does not of itself improve response time due to the slow expansion of the bulk of the cladding. We show that by straining the slotted sensor, the expansion component can be removed resulting in the response time being determined only by the more rapid, water induced change in core refractive index. In this way the response time is reduced by a factor of 2.5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chalcogenide optical fibers are currently undergoing intensive investigation with the aim of exploiting the excellent glass transmission and nonlinear characteristics in the near- and mid-infrared for several applications. Further enhancement of these properties can be obtained, for a particular application, with optical fibers specifically designed that are capable of providing low effective area together with a properly tailored dispersion, matching the characteristics of the laser sources used to excite nonlinear effects. Suspended-core photonic crystal fibers are ideal candidates for nonlinear applications, providing small-core waveguides with large index contrast and tunable dispersion. In this paper, the dispersion properties of As2S3 suspended-core fibers are numerically analyzed, taking into account, for the first time, all the structural parameters, including the size and the number of the glass bridges. The results show that a proper design of the cladding struts can be exploited to significantly change the fiber properties, altering the maximum value of the dispersion parameter and shifting the zero-dispersion wavelengths over a range of 400 nm.