867 resultados para Chylomicron metabolism
Resumo:
SUMMARY :Non-alcoholic fatty liver disease (NAFLD) is characterized by an elevated intra- hepatocellular lipid (IHCL) concentration (> 5%). The incidence of NAFLD is frequently increased in obese patients, and is considered to be the hepatic component of the metabolic syndrome. The metabolic syndrome, also characterized by visceral obesity, altered glucose homeostasis, insulin resistance, dyslipidemia, and high blood pressure, represents actually a major public health burden. Both dietary factors and low physical activity are involved in the development of the metabolic syndrome. ln animals and healthy humans, high-fat or high-fructose diets lead to the development of several features of the metabolic syndrome including increased intrahepatic lipids and insulin resistance. ln contrast the effects of dietary protein are less well known, but an increase in protein intake has been suggested to exert beneficial effects by promoting weight loss and improving glucose homeostasis in insulin-resistant patients. Increased postprandial thermogenesis and enhanced satiety after protein ingestion may be both involved. The effects of dietary protein on hepatic lipids have been poorly investigated in humans, but preliminary studies in rodents have shown a reduction of hepatic lipids in carbohydrate fed rats and in obese rats. ln this context this work aimed at investigating the metabolic effects of dietary protein intake on hepatic lipid metabolism and glucose homeostasis in humans. The modulation by dietary proteins of exogenous lipid oxidation, net lipid oxidation, hepatic beta-oxidation, triglycerides concentrations, whole-body energy expenditure and glucose tolerance was assessed in the fasting state and in postprandial states. Measurements of IHCL were performed to quantify the amount of triglycerides in the liver. ln an attempt to cover all these metabolic aspects under different point of views, these questions were addressed by three protocols involving various feeding conditions. Study I addressed the effects of a 4-day hypercaloric high-fat high-protein diet on the accumulation of fat in the liver (IHCL) and on insulin sensitivity. Our findings indicated that a high protein intake significantly prevents intrahepatic fat deposition induced by a short- term hypercaloric high-fat diet, adverse effects of which are presumably modulated at the liver level.These encouraging results led us to conduct the second study (Study ll), as we were also interested in a more clinical approach to protein administration and especially if increased protein intakes might be of benefit for obese patients. Therefore the effects of one-month whey protein supplementation on IHCL, insulin sensitivity, lipid metabolism, glucose tolerance and renal function were assessed in obese women. Results showed that whey protein supplementation reduces hepatic steatosis and improves the plasma lipid profile in obese patients, without adverse effects on glucose tolerance or creatinine clearance. However since patients were fed ud-libitum, it remains possible that spontaneous carbohydrate and fat intakes were reduced due to the satiating effects of protein. The third study (Study lll) was designed in an attempt to deepen our comprehension about the mechanisms involved in the modulation of IHCL. We hypothesized that protein improved lipid metabolism and, therefore, we evaluated the effects of a high protein meal on postprandial lipid metabolism and glucose homeostasis after 4-day on a control or a protein diet. Our results did not sustain the hypothesis of an increased postprandial net lipid oxidation, hepatic beta oxidation and exogenous lipid oxidation. Four days on a high-protein diet rather decreased exogenous fat oxidation and enhanced postprandial triglyceride concentrations, by impairing probably chylomicron-TG clearance. Altogether the results of these three studies suggest a beneficial effect of protein intake on the reduction in lHCL, and clearly show that supplementation of proteins do not reduce IHCL by stimulating lipid metabolism, e.g. whole body fat oxidation, hepatic beta oxidation, or exogenous fat oxidation. The question of the effects of high-protein intakes on hepatic lipid metabolism is still open and will need further investigation to be elucidated. The effects of protein on increased postprandial lipemia and lipoproteins kinetics have been little investigated so far and might therefore be an interesting research question, considering the tight relationship between an elevation of plasmatic TG concentrations and the increased incidence of cardiovascular diseases.Résumé :La stéatose hépatique non alcoolique se caractérise par un taux de lipides intra-hépatiques élevé, supérieur à 5%. L'incidence de la stéatose hépatique est fortement augmentée chez les personnes obèses, ce qui mène à la définir comme étant la composante hépatique du syndrome métabolique. Ce syndrome se définit aussi par d'autres critères tels qu'obésité viscérale, altération de l'homéostasie du glucose, résistance à l'insuline, dyslipidémie et pression artérielle élevée. Le syndrome métabolique est actuellement un problème de santé publique majeur.Tant une alimentation trop riche et déséquilibrée, qu'une faible activité physique, semblent être des causes pouvant expliquer le développement de ce syndrome. Chez l'animal et le volontaire sain, des alimentations enrichies en graisses ou en sucres (fructose) favorisent le développement de facteurs associés au syndrome métabolique, notamment en augmentant le taux de lipides intra-hépatiques et en induisant le développement d'une résistance à l'insuline. Par ailleurs, les effets des protéines alimentaires sont nettement moins bien connus, mais il semblerait qu'une augmentation de l'apport en protéines soit bénéfique, favorisant la perte de poids et l'homéostasie du glucose chez des patients insulino-résistants. Une augmentation de la thermogenese postprandiale ainsi que du sentiment de satiété pourraient en être à l'origine.Les effets des protéines sur les lipides intra-hépatiques chez l'homme demeurent inconnus à ce jour, cependant des études préliminaires chez les rongeurs tendent à démontrer une diminution des lipides intra hépatiques chez des rats nourris avec une alimentation riche en sucres ou chez des rats obèses.Dans un tel contexte de recherche, ce travail s'est intéressé à l'étude des effets métaboliques des protéines alimentaires sur le métabolisme lipidique du foie et sur l'homéostasie du glucose. Ce travail propose d'évaluer l'effet des protéines alimentaires sur différentes voies métaboliques impliquant graisses et sucres, en ciblant d'une part les voies de l'oxydation des graisses exogènes, de la beta-oxydation hépatique et de l'oxydation nette des lipides, et d'autre part la dépense énergétique globale et l'évolution des concentrations sanguines des triglycérides, à jeun et en régime postprandial. Des mesures des lipides intra-hépatiques ont aussi été effectuées pour permettre la quantification des graisses déposées dans le foie.Dans le but de couvrir l'ensemble de ces aspects métaboliques sous différents angles de recherche, trois protocoles, impliquant des conditions alimentaires différentes, ont été entrepris pour tenter de répondre à ces questions. La première étude (Etude I) s'est intéressée aux effets d'u.ne suralimentation de 4 jours enrichie en graisses et protéines sur la sensibilité à l'insuline et sur l'accumulation de graisses intra-hépatiques. Les résultats ont démontré que l'apport en protéines prévient l'accumulation de graisses intra-hépatiques induite par une suralimentation riche en graisses de courte durée ainsi que ses effets délétères probablement par le biais de mécanismes agissant au niveau du foie. Ces résultats encourageants nous ont conduits à entreprendre une seconde étude (Etude ll) qui s'intéressait à l'implication clinique et aux bénéfices que pouvait avoir une supplémentation en protéines sur les graisses hépatiques de patients obèses. Ainsi nous avons évalué pendant un mois de supplémentation l'effet de protéines de lactosérum sur le taux de graisses intrahépatiques, la sensibilité à l'insuline, la tolérance au glucose, le métabolisme des graisses et la fonction rénale chez des femmes obèses. Les résultats ont été encourageants; la supplémentation en lactosérum améliore la stéatose hépatique, le profil lipidique des patientes obèses sans pour autant altérer la tolérance au glucose ou la clairance de la créatinine. L'effet satiétogene des protéines pourrait aussi avoir contribué à renforcer ces effets. La troisième étude s'est intéressée aux mécanismes qui sous-tendent les effets bénéfiques des protéines observés dans les 2 études précédentes. Nous avons supposé que les protéines devaient favoriser le métabolisme des graisses. Par conséquent, nous avons cherché a évaluer les effets d'un repas riche en protéines sur la lipémie postprandiale et l'homéostasie glucidique après 4 jours d'alimentation contrôlée soit isocalorique et équilibrée, soit hypercalorique enrichie en protéines. Les résultats obtenus n'ont pas vérifié l'hypothèse initiale ; ni une augmentation de l'oxydation nette des lipides, ni celle d'une augmentation de la béta-oxydation hépatique ou de l'oxydation d'un apport exogène de graisses n'a pu étre observée. A contrario, il semblerait même plutôt que 4 jours d'a]irnentation hyperprotéinée inhibent le métabolisme des graisses et augmente les concentrations sanguines de triglycérides, probablement par le biais d'une clairance de chylornicrons altérée. Globalement, les résultats de ces trois études nous permettent d'attester que les protéines exercent un effet bénéfique en prévenant le dépot de graisses intra-hépatiques et montrent que cet effet ne peut être attribué à une stimulation du métabolisme des lipides via l'augmentation des oxydations des graisses soit totales, hépatiques, ou exogènes. La question demeure en suspens à ce jour et nécessite de diriger la recherche vers d'autres voies d'exploration. Les effets des protéines sur la lipémie postprandiale et sur le cinétique des lipoprotéines n'a que peu été traitée à ce jour. Cette question me paraît néanmoins importante, sachant que des concentrations sanguines élevées de triglycérides sont étroitement corrélées à une incidence augmentée de facteurs de risque cardiovasculaire.
Resumo:
The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.
Resumo:
By regulating the metabolism of fatty acids, carbohydrates, and xenobiotic, the mammalian circadian clock plays a fundamental role on the liver physiology. At present, it is supposed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level. However, recent evidences suggest that some signaling pathways synchronized by the circadian clock can also influence metabolism at a post-transcriptional level. In this context, we have recently shown that the circadian clock synchronizes the rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock, provokes deregulation of endoplasmic reticulum-localized enzymes, and leads to impaired lipid metabolism. We will describe here the additional pathways synchronized by the clock and discussed the influence of the circadian clock-controlled feeding rhythm on them.
Resumo:
This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands) and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.
Resumo:
The performance of mice expressing PDAPP (+/+ or +/-) was studied in the Morris place navigation task. Different lines of questions were investigated using PDAPP+/- mice in which the activity of the cytokine Tumor Necrosing Factor alpha (TNFalpha) was attenuated by chronic treatment with anti-TNF or deleting TNFalpha (TNF-/-). Two different categories of behavior were analyzed in adult (6 months) and middle aged (15 months) subjects. Classically, the cognitive performance was assessed from the escape efficacy and quantitative bias toward the training position in a Morris water maze. Second, stereotyped circling was quantified, along with more qualitative behavioral impairments such as self-mutilation or increased reactivity. Our results can be summarized as follows. (1) All of the PDAPP mice expressed reduced cognitive performance in the Morris task, but only those with a clear-cut amyloid burden in the hippocampus showed behavioral abnormalities such as stereotyped circling. (2) Chronic treatment with anti-TNF prevented the development of pathological circling in the 6-month-old mice but not in the 15-month-old mice and had no significant effect on amyloid burden. (3) The absence of TNFalpha prevented the development of stereotyped circling in 6- and 15-month-old mice but increased amyloid burden after 15 months. These data indicate that PDAPP mice express cognitive impairments disregarding absence of TNF. The pathological behavioral anomalies related to the PDAPP mutation seem reduced by treatments interfering with TNFalpha.
Resumo:
OBJECTIVES: To analyze the effect of tight glycemic control with the use of intensive insulin therapy on cerebral glucose metabolism in patients with severe brain injury. DESIGN: Retrospective analysis of a prospective observational cohort. SETTING: University hospital neurologic intensive care unit. PATIENTS: Twenty patients (median age 59 yrs) monitored with cerebral microdialysis as part of their clinical care. INTERVENTIONS: Intensive insulin therapy (systemic glucose target: 4.4-6.7 mmol/L [80-120 mg/dL]). MEASUREMENTS AND MAIN RESULTS: Brain tissue markers of glucose metabolism (cerebral microdialysis glucose and lactate/pyruvate ratio) and systemic glucose were collected hourly. Systemic glucose levels were categorized as within the target "tight" (4.4-6.7 mmol/L [80-120 mg/dL]) vs. "intermediate" (6.8-10.0 mmol/L [121-180 mg/dL]) range. Brain energy crisis was defined as a cerebral microdialysis glucose <0.7 mmol/L with a lactate/pyruvate ratio >40. We analyzed 2131 cerebral microdialysis samples: tight systemic glucose levels were associated with a greater prevalence of low cerebral microdialysis glucose (65% vs. 36%, p < 0.01) and brain energy crisis (25% vs.17%, p < 0.01) than intermediate levels. Using multivariable analysis, and adjusting for intracranial pressure and cerebral perfusion pressure, systemic glucose concentration (adjusted odds ratio 1.23, 95% confidence interval [CI] 1.10-1.37, for each 1 mmol/L decrease, p < 0.001) and insulin dose (adjusted odds ratio 1.10, 95% CI 1.04-1.17, for each 1 U/hr increase, p = 0.02) independently predicted brain energy crisis. Cerebral microdialysis glucose was lower in nonsurvivors than in survivors (0.46 +/- 0.23 vs. 1.04 +/- 0.56 mmol/L, p < 0.05). Brain energy crisis was associated with increased mortality at hospital discharge (adjusted odds ratio 7.36, 95% CI 1.37-39.51, p = 0.02). CONCLUSIONS: In patients with severe brain injury, tight systemic glucose control is associated with reduced cerebral extracellular glucose availability and increased prevalence of brain energy crisis, which in turn correlates with increased mortality. Intensive insulin therapy may impair cerebral glucose metabolism after severe brain injury.
Resumo:
Background:Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown.Methods:IUGR was induced through maternal dexamethasone infusion (100 μg/kg during last gestational week) in rats. Maternal supplementation with bLf (0.85% in food pellet) was provided during both gestation and lactation. Pup growth was monitored, and Pup brain metabolism and gene expression were studied using in vivo (1)H NMR spectroscopy, quantitative PCR, and microarray in the hippocampus at postnatal day (PND)7.Results:Maternal bLf supplementation did not change gestational weight but increased the birth body weight of control pups (4%) with no effect on the IUGR pups. Maternal bLf supplementation allowed IUGR pups to recover a normalized weight at PND21 (weaning) improving catch-up growth. Significantly altered levels of brain metabolites (γ-aminobutyric acid, glutamate, N-acetylaspartate, and N-acetylaspartylglutamate) and transcripts (brain-derived neurotrophic factor (BDNF), divalent metal transporter 1 (DMT-1), and glutamate receptors) in IUGR pups were normalized with maternal bLf supplementation.Conclusion:Our data suggest that maternal bLf supplementation is a beneficial nutritional intervention able to revert some of the IUGR-induced sequelae, including brain hippocampal changes.
Resumo:
Pseudomonas azelaica HBP1 is one of the few bacteria known to completely mineralize the biocide and toxic compound 2-hydroxybiphenyl (2-HBP), but the mechanisms of its tolerance to the toxicity are unknown. By transposon mutant analysis and screening for absence of growth on water saturating concentrations of 2-HBP (2.7 mM) we preferentially found insertions in three genes with high homology to the mexA, mexB, and oprM efflux system. Mutants could grow at 2-HBP concentrations below 100 μM but at lower growth rates than the wild-type. Exposure of the wild-type to increasing 2-HBP concentrations resulted in acute cell growth arrest and loss of membrane potential, to which the cells adapt after a few hours. By using ethidium bromide (EB) as proxy we could show that the mutants are unable to expel EB effectively. Inclusion of a 2-HBP reporter plasmid revealed that the wild-type combines efflux with metabolism at all 2-HBP concentrations, whereas the mutants cannot remove the compound and arrest metabolism at concentrations above 24 μM. The analysis thus showed the importance of the MexAB-OprM system for productive metabolism of 2-HBP.
Resumo:
This article describes the application of a recently developed general unknown screening (GUS) strategy based on LC coupled to a hybrid linear IT-triple quadrupole mass spectrometer (LC-MS/MS-LIT) for the simultaneous detection and identification of drug metabolites following in vitro incubation with human liver microsomes. The histamine H1 receptor antagonist loratadine was chosen as a model compound to demonstrate the interest of such approach, because of its previously described complex and extensive metabolism. Detection and mass spectral characterization were based on data-dependent acquisition, switching between a survey scan acquired in the ion-trapping Q3 scan mode with dynamic subtraction of background noise, and a dependent scan in the ion-trapping product ion scan mode of automatically selected parent ions. In addition, the MS(3) mode was used in a second step to confirm the structure of a few fragment ions. The sensitivity of the ion-trapping modes combined with the selectivity of the triple quadrupole modes allowed, with only one injection, the detection and identification of 17 phase I metabolites of loratadine. The GUS procedure used in this study may be applicable as a generic technique for the characterization of drug metabolites after in vitro incubation, as well as probably in vivo experiments.
Resumo:
Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.
Resumo:
Disturbances of the cholesterol metabolism are associated with Alzheimer's disease (AD) risk and related cerebral pathology. Experimental studies found changing levels of cholesterol and its metabolites 24S-hydroxycholesterol (24S-OHC) and 27-hydroxycholesterol (27-OHC) to contribute to amyloidogenesis by increasing the production of soluble amyloid precursor protein (sAPP). The aim of this study was to evaluate the relationship between the CSF and circulating cholesterol 24S-OHC and 27-OHC, and the sAPP production as measured by CSF concentrations of sAPP forms in humans. The plasma and the CSF concentrations of cholesterol, 24S-OHC and 27-OHC, and the CSF concentrations of sAPPα, sAPPβ, and Aß1-42 were assessed in subjects with AD and controls with normal cognition. In multivariate regression tests including age, gender, albumin ratio, and apolipoprotein E (APOE)ε4 status CSF cholesterol, 24S-OHC, and 27-OHC independently predicted the concentrations of sAPPα and sAPPβ. The associations remained significant when analyses were separately performed in the AD group. Furthermore, plasma 27-OHC concentrations were associated with the CSF sAPP levels. The results suggest that high CSF concentrations of cholesterol, 24S-OHC, and 27-OHC are associated with increased production of both sAPP forms in AD.
Resumo:
Résumé But: Chez les individus sveltes et en bonne santé, les modifications de la sensibilité à l'insuline secondaires à l'administration de dexaméthasone pendant deux jours sont compensées par une modification de la sécrétion d'insuline, permettant le maintien de l'homéostasie glucidique. Cette étude évalue les modifications du métabolisme glucidique et de la sécrétion d'insuline induites par une administration limitée de dexaméthasone chez les femmes obèses. Méthode de recherche: Onze femmes obèses ayant une tolérance au glucose normale ont été étudiées à deux reprises, 1° sans dexaméthasone et 2° après deux jours d'administration de dexaméthasone à faible dose. Un clamp hyperglycémique comportant deux plateaux (taux plasmatique de glucose à 7.5, respectivement 10 mM) avec du glucose marqué (6.6 ²H2 glc) a été utilisé pour déterminer la sécrétion d'insuline et le métabolisme du glucose du corps entier. Les résultats ont été comparés à ceux d'un groupe de huit femmes sveltes. Résultats : Sans dexaméthasone, les femmes obèses avaient un taux d'insuline plasmatique supérieur à jeun, durant le premier pic de sécrétion d'insuline, et aux deux plateaux hyperglycémiques. Elles avaient toutefois un métabolisme glucidique normal comparé à celui des femmes sveltes, ce qui indique une compensation adéquate. Après administration de la dexaméthasone, les femmes obèses avaient une augmentation du taux d'insuline plasmatique de 66 à 92%, mais une baisse de stockage du glucose de 15.4%. Ceci contrastait avec l'augmentation du taux d'insuline plasmatique de 91 à 113% chez les femmes sveltes et l'absence de changement de stockage du glucose du corps entier. Discussion : L'administration de dexaméthasone conduit à une baisse significative du stockage du glucose du corps entier pour une glycémie fixée chez les femmes obèses mais non chez les femmes sveltes. Ceci indique que les femmes obèses sont incapables d'accroître adéquatement leur sécrétion d'insuline. Abstract: Objective: In healthy lean individuals, changes in insulin sensitivity occurring as a consequence of a 2-day dexamethasone administration are compensated for by changes in insulin secretion, allowing glucose homeostasis to be maintained. This study evaluated the changes in glucose metabolism and insulin secretion induced by short-term dexamethasone administration in obese women. Research Methods and Procedures: Eleven obese women with normal glucose tolerance were studied on two occasions, without and after 2 days of low-dose dexamethasone administration. A two-step hyperglycemic clamp (7.5 and 10 mr1/1 glucose) with 6,6 2H2 glucose was used to assess insulin secretion and whole body glucose metabolism. Results were compared with those obtained in a group of eight lean women. Results: Without dexamethasone, obese women had higher plasma insulin concentrations in the fasting state, during the first phase of insulin secretion, and at the two hyperglycemic plateaus. However, they had normal whole body glucose metabolism compared with lean women, indicating adequate compensation. After dexamethasone, obese women had a 66% to 92% increase in plasma insulin concentrations but a 15.4% decrease in whole body glucose disposal. This contrasted with lean women, who had a 91% to 113% increase in plasma insulin concentrations, with no change in whole body glucose disposal. Discussion: Dexamethasone administration led to a significant reduction in whole body glucose disposal at fixed glycemia in obese but not lean women. This indicates that obese women are unable to increase their insulin secretion appropriately.
Resumo:
Polyamines (PAs) are small polycationic compounds present in all living organisms. Compelling evidences indicate a role for PAs in plant protection against stress. During the recent years, genetic, molecular and ‘omic’ approaches have been undertaken to unravel the role of PAs in stress signaling. Overall, results point to intricate relationships between PAs, stress hormone pathways and ROS signaling. Such cross-regulations condition stress signaling through the modulation of abscisic acid (ABA) and ROS amplification-loops. In this chapter we compile our recent findings which elucidate molecular mechanisms and signalingpathways by which PAs contribute to stress protection in plants.
Resumo:
The purpose of this study was to compare the effects of propranolol administered either by i.v. infusion or by prolonged oral administration (4 days) during the first 3 weeks following burns. The resting metabolic rate (RMR) of 10 non-infected fasting burned patients (TBSA: 28 per cent, range 18-37 per cent) was determined four times consecutively by indirect calorimetry (open circuit hood system) following: (1) i.v. physiological saline; (2) i.v. propranolol infusion (2 micrograms/kg/min following a bolus of 80 micrograms/kg); (3) oral propranolol (40 mg q.i.d. during 4 +/- 1 days); and (4) in control patients. All patients showed large increases in both RMR (144 +/- 2 per cent of reference values) and in urinary catecholamine excretion (three to four times as compared to control values). The infusion of propranolol induced a significant decrease in RMR to 135 +/- 2 per cent and oral propranolol to 129 +/- 3 per cent of reference values. A decrease in lipid oxidation but no change in carbohydrate and protein oxidation were observed during propranolol administration. It is concluded that the decrease in RMR induced by propranolol was not influenced by the route of administration. The magnitude of the decrease in energy expenditure suggests that beta-adrenergic hyperactivity represents only one of the mediators of the hypermetabolic response to burn injury.
Resumo:
Due to the development of new 'bedside' investigative methods, relatively abstract physiologic concepts such as energy cost of growth, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified in very low birthweight infants. 'Healthy' premature infants expend about 30% of their energy to cover the metabolic cost of growth. Stable isotope techniques using 15N-(or 13C)-labeled amino acids gave a new insight into this very high energy demanding process represented by the protein accretion in growing tissues. It has been demonstrated that the rate of protein synthesis (10-12 g/kg/day) greatly exceeds that necessary for net protein gain (2 g/kg/day). The postnatal growth and protein metabolism have different characteristics in 'healthy', 'sick' or 'intrauterine undernourished' very low birthweight infants.