932 resultados para Chemical reaction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work intends to know the most types of ignition systems, studying its history, the way it works, applications and some examples. The assembly of a distributor less ignition system is also required. All vehicles powered by internal combustion engines need an ignition system that allows this engine to ignite the air-fuel mixture using its ignition system in the best possible manner. The main goal of an ignition system is to obtain a spark having enough energy to start the chemical reaction of the oxygen and the fuel. It took a study dealing with the various types of ignition systems since their creation at the beginning of the last century until 2015. The work starts studying the high tension magneto ignition system and later together with the low tension ignition system, going on with the conventional ignition system and finally accomplishing with the various types of electronic ignition systems. It was studied and implemented an electronic circuit to power a double spark ignition system also known as wasted spark ignition system. This circuit was assembled with an electric pulse generator and powered mechanically by a dc electric motor of the variable rpm type

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Persistently high glycemic levels are extremely harmful to the organism and can lead patients to several complications of diabetes mellitus. Glycated hemoglobin represents the glycemic levels for what patient is chronically exposed. Methods: Two virtual databases were surveyed in two languages: Portuguese and English. 12 articles were selected and reviewed. Results and discussion: The HbA1c is used since 1958 in the assessment of glycemic control in diabetic patients. It is formed by a chemical reaction between hemoglobin A and acarbohydrate. Each percentage point of glycated hemoglobin represents approximately 35mg/dL in patient's averageglycemia. Conclusion: The glycated hemoglobin should be measured at least twice per year in patients with diabetes in general. In case of change of hypoglycemic therapy, this frequency should be doubled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The widespread independent evolution of analogous bioluminescent systems is one of the most impressive and diverse examples of convergent evolution on earth. There are roughly 30 extant bioluminescent systems that have evolved independently on Earth, with each system likely having unique enzymes responsible for catalysing the bioluminescent reaction. Bioluminescence is a chemical reaction involving a luciferin molecule and a luciferase or photoprotein that results in the emission of light. Some independent systems utilize the same luciferin, such as the use of tetrapyrrolic compounds by krill and dinoflagellates, and the wide use of coelenterazine by marine organisms, while the enzymes involved are unique. One common thread among all the different bioluminescent systems is the requirement of molecular oxygen. Bioluminescence is found in most forms of life, especially marine organisms. Bioluminescence in known to benefit the organism by: attraction, repulsion, communication, camouflage, and illumination. The marine ecosystem is significantly affected by bioluminescence, the only light found in the pelagic zone and below is from bioluminescent organisms. Transgenic bioluminescent organisms have revolutionized molecular research, medicine and the biotechnology industry. The use of bioluminescence in studying molecular pathways and disease allows for non-invasive and real-time analysis. Bioluminescence-based assays have been developed for several analytes by coupling luminescence to many enzyme-catalysed reactions. Received 17 February 2012, accepted 27 March 2012, first published online 2 May 2012

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of electrochemiluminescence (ECL) involves photophysical and electrochemical aspects. Excited states are populated by an electrical stimulus. The most important applications are in the diagnostic field where a number of different biologically-relevant molecules (e.g. proteins and nucleic acids) can be recognized and quantified with a sensitivity and specificity previously not reachable. As a matter of fact the electrochemistry, differently to the classic techniques as fluorescence and chemiluminescence, allows to control the excited state generation spatially and temporally. The two research visits into A. J. Bard electrochemistry laboratories were priceless. Dr. Bard has been one of ECL pioneers, the first to introduce the technique and the one who discovered in 1972 the surprising emission of Ru(bpy)3 2+. I consider necessary to thank by now my supervisors Massimo and Francesco for their help and for giving me the great opportunity to know this unique science man that made me feel enthusiastic. I will never be grateful enough… Considering that the experimental techniques of ECL did not changed significantly in these last years the most convenient research direction has been the developing of materials with new or improved properties. In Chapter I the basics concepts and mechanisms of ECL are introduced so that the successive experiments can be easily understood. In the final paragraph the scopes of the thesis are briefly described. In Chapter II by starting from ECL experimental apparatus of Dr. Bard’s laboratories the design, assembly and preliminary tests of the new Bologna instrument are carefully described. The instrument assembly required to work hard but resulted in the introduction of the new technique in our labs by allowing the continuation of the ECL studies began in Texas. In Chapter III are described the results of electrochemical and ECL studies performed on new synthesized Ru(II) complexes containing tetrazolate based ligands. ECL emission has been investigated in solution and in solid thin films. The effect of the chemical protonation of the tetrazolate ring on ECL emission has been also investigated evidencing the possibility of a catalytic effect (generation of molecular hydrogen) of one of the complexes in organic media. Finally, after a series of preliminary studies on ECL emission in acqueous buffers, the direct interaction with calf thymus DNA of some complexes has been tested by ECL and photoluminescence (PL) titration. In Chapter IV different Ir(III) complexes have been characterized electrochemically and photophysically (ECL and PL). Some complexes were already well-known in literature for their high quantum efficiency whereas the remaining were new synthesized compounds containing tetrazolate based ligands analogous to those investigated in Chapt. III. During the tests on a halogenated complex was unexpectedly evidenced the possibility to follow the kinetics of an electro-induced chemical reaction by using ECL signal. In the last chapter (V) the possibility to use mono-use silicon chips electrodes as ECL analitycal devices is under investigation. The chapter begins by describing the chip structure and materials then a signal reproducibility study and geometry optimization is carried on by using two different complexes. In the following paragraphs is reported in detail the synthesis of an ECL label based on Ru(bpy)3 2+ and the chip functionalization by using a lipoic acid SAM and the same label. After some preliminary characterizations (mass spectroscopy TOF) has been demonstrated that by mean of a simple and fast ECL measurement it’s possible to confirm the presence of the coupling product SAM-label into the chip with a very high sensitivity. No signal was detected from the same system by using photoluminescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spontane-Desorption-Massenspektrometrie zur Charakterisierung von gemischten, selbstorganisierten Schichten zur Metallabscheidung und zur Beobachtung von chemischen Reaktionen in dünnsten Filmen Stephan Krämer Ein Ziel dieser Arbeit war es, selbstorganisierte Schichten aus steifen benzolhaltigen Thiolen herzustellen und zu charakterisieren. Diese selbstorganisierten Schichten sollten als optimale Substrate zur Abscheidung von Metallen durch CVD dienen.In einem ersten Schritt wurden Schichten aus Biphenylthiol (BT) und Biphenyldithiol (BDT) auf Edelmetalloberflächen hergestellt. Die Abhängigkeit der Eigenschaften der Schicht von dem verwendeten Substrat und von der Dauer der Selbstorganisation wurde mit der Spontane-Desorption-Massenspektrometrie untersucht. Die Untersuchung der Schichtdicke erfolgte mit Oberflächenplasmonen-Spektroskopie und die Frage der Struktur der Schichten wurde versucht, mit Hilfe der Fourier-Transform-Infrarot-Spektroskopie zu klären. Nach der Charakterisierung der reinen Schichten wurden binäre Mischungen aus BT und BDT hergestellt und auf Goldoberflächen abgeschieden. Die so hergestellten binären Schichten wurden als Substrate zur Abscheidung von Gold benutzt. Dazu wurde mit Hilfe der CVD-Technik Gold auf den Filmen abgeschieden. Im nächsten Schritt wurden die einfacheren Halogen-substituierten Phenylthiole sowohl als reine Schichten als auch als binäre Mischungen untersucht. Ein weiterer Schwerpunkt stellte die Untersuchungen zur Abscheidung von Metallen auf selbstorganisierten Schichten durch CVD dar. Neben der schon vorgestellten Abscheidung von Gold wurde die Abscheidung von Palladium und von Kupfer untersucht. Im letzten Teil dieser Arbeit wurden der Verlauf einer chemischen Reaktion in einem ultradünnen Polymerfilm beobachtet. Dazu wurden die Vernetzungsreaktion und die Hydrolyse des Copolymer P[tBMA1-co-DMIMA0,11] untersucht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZusammenfassungDie Analyse von Isotopenverhältnissen ist von wachsender Bedeutung bei der Untersuchung von Quellen, Senken und chemischen Reaktionswegen atmosphärischer Spurengase. Distickstoffoxid (N2O) hat vier isotopisch einfach substituierte Spezies: 14N15N16O, 15N14N16O, 14N217O und 14N218O. In der vorliegenden Arbeit wurden massenspektrometrische Methoden entwickelt, die eine komplette Charakterisierung der Variationen im Vorkommen dieser Spezies ermöglichen. Es wird die bisher umfassendste Darstellung dieser Variationen in Troposphäre und Stratosphäre gegeben und mit Bezug auf eine Reihe von Laborexperimenten detailliert interpretiert.Die Laborexperimente machen einen großen Anteil dieser Doktorarbeit aus und konzentrieren sich auf die Isotopenfraktionierung in den stratosphärischen N2O-Senken, d. h. Photolyse und Reaktion mit elektronisch angeregten Sauerstoffatomen, O(1D). Diese Prozesse sind von dominantem Einfluß auf die Isotopenzusammensetzung von atmosphärischem N2O. Potentiell wichtige Parameter wie Temperatur- und Druckvariationen, aber auch Veränderungen der Wellenlänge im Fall der Photolyse wurden berücksichtigt. Photolyse bei stratosphärisch relevanten Wellenlängen > 190 nm zeigte immer Anreicherungen von 15N in beiden Stickstoffatomen des verbleibenden N2O wie auch in 17O und 18O. Die Anreicherungen waren am mittelständigen N-Atom signifikant höher als am endständigen N (mit mittleren Werten für 18O) und stiegen zu größeren Wellenlängen und niedrigeren Temperaturen hin an. Erstmalig wurden für 18O und 15N am endständigen N-Atom Isotopenabreicherungen bei 185 nm-Photolyse festgestellt. Im Gegensatz zur Photolyse waren die Isotopenanreicherungen bei der zweiten wichtigen N2O-Senke, Reaktion mit O(1D) vergleichsweise gering. Jedoch war das positionsabhängige Fraktionierungsmuster dem der Photolyse direkt entgegengesetzt und zeigte größere Anreicherungen am endständigen N-Atom. Demgemäß führen beiden Senkenprozesse zu charakteristischen Isotopensignaturen in stratosphärischem N2O. Weitere N2O-Photolyseexperimente zeigten, daß 15N216O in der Atmosphäre höchstwahrscheinlich mit der statistisch zu erwartenden Häufigkeit vorkommt.Kleine stratosphärische Proben erforderten die Anpassung der massenspektrometrischen Methoden an Permanentflußtechniken, die auch für Messungen an Firnluftproben von zwei antarktischen Stationen verwendet wurden. Das 'Firnluftarchiv' erlaubte es, den gegenwärtigen Trend und die präindustriellen Werte der troposphärischen N2O-Isotopensignatur zu bestimmen. Ein daraus konstruiertes globales N2O-Isotopenbudget ist im Einklang mit den besten Schätzungen der Gesamt-N2O-Emissionen aus Böden und Ozeanen.17O-Messungen bestätigten die Sauerstoffisotopenanomalie in atmosphärischem N2O, zeigten aber auch, daß N2O-Photolyse die Sauerstoffisotope gemäß einem massenabhängigen Fraktionierungsgesetz anreichert. Eine troposphärische Ursache für einen Teil des Exzeß-17O wurde vorgeschlagen, basierend auf der Reaktion von NH2 mit NO2, wodurch die Sauerstoffisotopenanomalie von O3 über NO2 an N2O übertragen wird.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Photoemissions-Elektronenmikroskopie ist eine hervorragend geeignete Methode zur Untersuchung dynamischer Vorgänge auf realen polykristallinen Oberflächen im sub-μm Bereich. Bei der Anwendung auf Adsorbatsysteme lassen sich geringe Bedeckungsunterschiede, sowie Adsorbatstrukturen und -phasen unterscheiden. Die Methode erlaubt dabei ein breites Anwendungsspektrum über weite Temperaturbereiche und Systeme unterschiedlichster Bindungsenergie. Bei der Chemisorption von Sauerstoff auf polykristallinen Metallen wird unterschiedliches Aufwachsverhalten in den Helligkeitswerten im Mikroskopbild widergespiegelt. Bei Kupferproben zeigen Oberflächen mit unterschiedlicher kristalliner Richtung aufgrund der Symmetrie des fcc-Gitters ein ähnliches Verhalten. Das hexagonale Gitter des Titans zeigt dagegen große Unterschiede im Adsorptionsverhalten in Abhängigkeit der kristallinen Richtung. Diese Unterschiede konnten auf verschiedene Haftkoeffizienten und Oxidationsstufen der Metalle zurückgeführt werden. In einem Modell zur Photostromanalyse konnte beim Kupfer der Übergang von verschiedenen Überstrukturen bei wachsender Bedeckung gezeigt und die Übergänge ermittelt werden.. Auf den Titanoberflächen wurde so das Wachstum der Oxide TiO, TiO2 und Ti2O3 unterschieden und die Übergänge des unterschiedlichen Wachstums ermittelt. Bei der thermischen Desorption der Schichten konnten unterschiedliche Haftkoeffizient auf einzelnen Kristalliten qualitativ gezeigt werden. Diese erstmalig eingesetzte Analysemethode weist Ähnlichkeiten zur Thermo-Desorptions-Spektroskopie (TDS) auf, zeigt jedoch ortsaufgelöst lokale Unterschiede auf polykristallinen Oberflächen. Bei thermisch gestützten Oberflächenreaktionen ließen sich die Reaktionskeime deutlich identifizieren und mit einer Grauwertanalyse konnte die Oxidation der karbidischen Lagen zu Kohlenmonoxid und die Metalloxidation unterschieden werden. Dabei konnte gezeigt werden, daß die Reaktionskeime nur an Plattengrenzen auftreten, nicht jedoch auf der Oberfläche. Durch die Aufrauhung der Plattengrenzen mit zunehmender Reaktionsdauer nimmt die Zahl der Reaktionskeime kontinuierlich zu, die laterale Ausdehnung der Einzelreaktionen bleibt aber konstant. Bei der Physisorption von Xenon auf Graphit wurde erstmals für die Photoemissionsmikroskopie die resonanten Anregung ausgenutzt. Die verschiedenen Phasen des Adsorbats können dabei deutlich unterschieden werden; bei niedrigen Temperaturen (40K) findet ein gleichmäßiges Wachstum auf der gesamten Oberfläche statt, bei höheren Temperaturen von 60-65K ist dagegen ein Inselwachstum in verschiedenen Phasen zu beobachten. Die zeitliche Entwicklung des Wachstums, die örtliche Lage der Phasen und die Phasenübergänge (gas, fest inkommensurabel, fest kommensurabel) konnten bestimmt werden. Bei der Desorption der Schichten konnten die einzelnen Phasen ebenfalls getrennt werden und das unterschiedliche Desorptionsverhalten sowie die Phasenübergänge selber verifiziert werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foundry aluminum alloys play a fundamental role in several industrial fields, as they are employed in the production of several components in a wide range of applications. Moreover, these alloys can be employed as matrix for the development of Metal Matrix Composites (MMC), whose reinforcing phases may have different composition, shape and dimension. Ceramic particle reinforced MMCs are particular interesting due to their isotropic properties and their high temperature resistance. For this kind of composites, usually, decreasing the size of the reinforcing phase leads to the increase of mechanical properties. For this reason, in the last 30 years, the research has developed micro-reinforced composites at first, characterized by low ductility, and more recently nano-reinforced ones (the so called metal matrix nanocomposite, MMNCs). The nanocomposites can be obtained through several production routes: they can be divided in in-situ techniques, where the reinforcing phase is generated during the composite production through appropriate chemical reactions, and ex situ techniques, where ceramic dispersoids are added to the matrix once already formed. The enhancement in mechanical properties of MMNCs is proved by several studies; nevertheless, it is necessary to address some issues related to each processing route, as the control of process parameters and the effort to obtain an effective dispersion of the nanoparticles in the matrix, which sometimes actually restrict the use of these materials at industrial level. In this work of thesis, a feasibility study and implementation of production processes for Aluminum and AlSi7Mg based-MMNCs was conducted. The attention was focused on the in-situ process of gas bubbling, with the aim to obtain an aluminum oxide reinforcing phase, generated by the chemical reaction between the molten matrix and industrial dry air injected in the melt. Moreover, for what concerns the ex-situ techniques, stir casting process was studied and applied to introduce alumina nanoparticles in the same matrix alloys. The obtained samples were characterized through optical and electronic microscopy, then by micro-hardness tests, in order to evaluate possible improvements in mechanical properties of the materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid and sensitive detection of chemical and biological analytes becomes increasingly important in areas such as medical diagnostics, food control and environmental monitoring. Optical biosensors based on surface plasmon resonance (SPR) and optical waveguide spectroscopy have been extensively pushed forward in these fields. In this study, we combine SPR, surface plasmon-enhanced fluorescence spectroscopy (SPFS) and optical waveguide spectroscopy with hydrogel thin film for highly sensitive detection of molecular analytes.rnrnA novel biosensor based on SPFS which was advanced through the excitation of long range surface plasmons (LRSPs) is reported in this study. LRSPs are special surface plasmon waves propagating along thin metal films with orders of magnitude higher electromagnetic field intensity and lower damping than conventional SPs. Therefore, their excitation on the sensor surface provides further increased fluorescence signal. An inhibition immunoassay based on LRSP-enhanced fluorescence spectroscopy (LRSP-FS) was developed for the detection of aflatoxin M1 (AFM1) in milk. The biosensor allowed for the detection of AFM1 in milk at concentrations as low as 0.6 pg mL-1, which is about two orders of magnitude lower than the maximum AFM1 residue level in milk stipulated by the European Commission legislation.rnrnIn addition, LRSPs probe the medium adjacent to the metallic surface with more extended evanescent field than regular SPs. Therefore, three-dimensional binding matrices with up to micrometer thickness have been proposed for the immobilization of biomolecular recognition elements with large surface density that allows to exploit the whole evanescent field of LRSP. A photocrosslinkable carboxymethyl dextran (PCDM) hydrogel thin film is used as a binding matrix, and it is applied for the detection of free prostate specific antigen (f-PSA) based on the LRSP-FS and sandwich immunoassay. We show that this approach allows for the detection of f-PSA at low femto-molar range, which is approximately four orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.rnrnHowever, a three dimensional hydrogel binding matrix with micrometer thickness can also serve as an optical waveguide. Based on the measurement of binding-induced refractive index changes, a hydrogel optical waveguide spectroscopy (HOWS) is reported for a label-free biosensor. This biosensor is implemented by using a SPR optical setup in which a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) hydrogel film is attached on a metallic surface and modified by protein catcher molecules. Compared to regular SPR biosensor with thiol self-assembled monolayer (SAM), HOWS provides an order of magnitude improved resolution in the refractive index measurements and enlarged binding capacity owing to its low damping and large swelling ratio, respectively. A model immunoassay experiment revealed that HOWS allowed detection of IgG molecules with a 10 pM limit of detection (LOD) that was five-fold lower than that achieved for SPR with thiol SAM. For the high capacity hydrogel matrix, the affinity binding was mass transport limited.rnrnThe mass transport of target molecules to the sensor surface can play as critical a role as the chemical reaction itself. In order to overcome the diffusion-limited mass transfer, magnetic iron oxide nanoparticles were employed. The magnetic nanoparticles (MNPs) can serve both as labels providing enhancement of the refractive index changes, and “vehicles” for rapidly delivering the analytes from sample solution to an SPR sensor surface with a gradient magnetic field. A model sandwich assay for the detection of β human chorionic gonadotropin (βhCG) has been utilized on a gold sensor surface with metallic diffraction grating structure supporting the excitation of SPs. Various detection formats including a) direct detection, b) sandwich assay, c) MNPs immunoassay without and d) with applied magnetic field were compared. The results show that the highly-sensitive MNPs immunoassay improves the LOD on the detection of βhCG by a factor of 5 orders of magnitude with respect to the direct detection.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.