998 resultados para Charge sensitive preamplifier
Resumo:
The intercalation of linear alkylamines (C1-C4) in the two-dimensional (2D) Ising antiferromagnet, FePS3, has been investigated. Intercalation proceeds with a dilation of the interlayer distance. The expansion (approximately 3.8 angstrom) is the same for all four amine molecules, suggesting that they are oriented flat with respect to the layers. From an analysis of the products of deintercalation, it is concluded that the intercalated species are the alkylammonium cations and neutral amine molecules. The intercalated compounds are highly moisture sensitive, as reflected in the chemical nature of the intercalated species. Charge neutrality of the lattice after intercalation is preserved by the loss of Fe2+ ions from the lattice. These Fe2+ ions are further oxidized to form superparamagnetic Fe2O3 clusters, as confirmed by Mossbauer spectra and magnetic measurements. This was further corroborated by in situ EPR studies. The Fe-57 Mossbauer spectra of the intercalated compounds showed evidence for two species other than Fe2O3. On the basis of the observed isomer shifts and quadrupole splittings, they have been assigned to Fe2+ in an environment similar to that in FePS3 and in a distorted FePS3 environment. The temperature and field dependence of the magnetic susceptibility of single crystals of the amine-intercalated FePS3 have been measured. Their magnetic behavior shows many of the features expected of a 2D Ising antiferromagnet with random defects, Fe1-xPS3, in agreement with the mechanism of intercalation.
Resumo:
The modularity of the supramolecular synthon is used to obtain transferability of charge density derived multipolar parameters for structural fragments, thus creating an opportunity to derive charge density maps for new compounds. On the basis of high resolution X-ray diffraction data obtained at 100 K for three compounds methoxybenzoic acid, acetanilide, and 4-methyl-benzoic acid, multipole parameters for O-H center dot center dot center dot O carboxylic acid dimer and N-H center dot center dot center dot O amide infinite chain synthon fragments have been derived. The robustness associated with these supramolecular synthons has been used to model charge density derived multipolar parameters for 4-(acetylamino)benzoic acid and 4-methylacetanilide. The study provides pointers to the design and fabrication of a synthon library of high resolution X-ray diffraction data sets. It has been demonstrated that the derived charge density features can be exploited in both intra- and intermolecular space for any organic compound based on transferability of multipole parameters. The supramolecular synthon based fragments approach (SBFA) has been compared with experimental charge density data to check the reliability of use of this methodology for transferring charge density derived multipole parameters.
Resumo:
Many of the most intriguing quantum effects are observed or could be measured in transport experiments through nanoscopic systems such as quantum dots, wires and rings formed by large molecules or arrays of quantum dots. In particular, the separation of charge and spin degrees of freedom and interference effects have important consequences in the conductivity through these systems. Charge-spin separation was predicted theoretically in one-dimensional strongly inter-acting systems (Luttinger liquids) and, although observed indirectly in several materials formed by chains of correlated electrons, it still lacks direct observation. We present results on transport properties through Aharonov-Bohmrings (pierced by a magnetic flux) with one or more channels represented by paradigmatic strongly-correlated models. For a wide range of parameters we observe characteristic dips in the conductance as a function of magnetic flux which are a signature of spin and charge separation. Interference effects could also be controlled in certain molecules and interesting properties could be observed. We analyze transport properties of conjugated molecules, benzene in particular, and find that the conductance depends on the lead configuration. In molecules with translational symmetry, the conductance can be controlled by breaking or restoring this symmetry, e.g. by the application of a local external potential. These results open the possibility of observing these peculiar physical properties in anisotropic ladder systems and in real nanoscopic and molecular devices.
Resumo:
A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.
Resumo:
Polyelectrolyte complex formation involving carboxymethylcellulose and quaternized poly(vinylpyridine) as the polyions has been studied using viscosity and u.v. spectroscopic methods. The influence of charge density and molecular weight of two polycations on the composition of the complex has been investigated at two different concentrations. The charge density of the polycation is found to have different influences on the composition at different concentrations. The molecular weight of the polycation and the location of the ionic site on the polycation do not show any effect on the composition. A drastic increase in the viscosity of the polyion mixture containing quaternized poly(2-vinylpyridine) in the non-stoichiometric ratio shows evidence for the existence of the soluble polyelectrolyte complex. The results are analysed on the basis of the relative extension of the polyelectrolyte chains.
Resumo:
We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, beta(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I-2 omega,I-X,I-X/I-2 omega,I-Z,I-X and D' = I-2 omega,I-X,I-C/I-2 omega,I-Z,I-C in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, beta(HRS), and the value of macroscopic depolarization ratios, D and D', are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical beta(HRS), D and D' values as a function of the geometry of the complex. The calculated beta(HRS), D, and D' values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30 degrees is observed. Thus, we have demonstrated in this paper that the polarization resolved HRS technique along with theoretical calculations can unravel the geometry of CT complexes in solution. (C) 2011 American Institute of Physics. doi:10.1063/1.3514922]
Resumo:
In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, beta(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases. (C) 2011 American Institute of Physics. doi:10.1063/1.3526748]
Resumo:
he porphyrin ring in the title compound, 10,19-dinitro-2,7,12,17-tetraphenyl-21,22,23,24-tetraazapenta-cyclo[16.2.1.1(3,6).1(8,11).1(13,16)]tetracosa-1,3,5,7,9,11(23),-12,14,16,18(21),19-undecaene 0.5-dichloromethane solvate, C44H28N6O4.0.5CH2Cl2, adopts a saddle conformation with neighbouring pyrrole rings tilted with respect to each other. The two nitro groups are situated on alternate pyrrole rings and have their planes angled away from those of the pyrrole rings, thereby indicating that interaction between the porphyrin and nitro groups is slight.
Resumo:
In this paper we present a novel macroblock mode decision algorithm to speedup H.264/SVC Intra frame encoding. We replace the complex mode-decision calculations by a classifier which has been trained specifically to minimize the reduction in RD performance. This results in a significant speedup in encoding. The results show that machine learning has a great potential and can reduce the complexity substantially with negligible impact on quality. The results show that the proposed method reduces encoding time to about 70% in base layer and up to 50% in enhancement layer of the reference implementation with a negligible loss in quality.
Resumo:
gamma delta T-cell receptor-bearing T cells (gamma delta T cells) are readily activated by intracellular bacterial pathogens such as Mycobacterium tuberculosis. The bacterial antigens responsible for gamma delta T-cell activation remain poorly characterized. We have found that heat treatment of live M. tuberculosis bacilli released into the supernatant an antigen which stimulated human gamma delta T cells, gamma delta T-cell activation was measured by determining the increase in percentage of gamma delta T cells by flow cytometry in peripheral blood mononuclear cells stimulated with antigen and by proliferation of gamma delta T-cell lines with monocytes as antigen-presenting cells. Supernatant from heat-treated M. tuberculosis was fractionated by fast-performance liquid chromatography (FPLC) on a Superose 12 column. Maximal gamma delta T-cell activation was measured for a fraction of 10 to 14 kDa. Separation of the supernatant by preparative isoelectric focusing demonstrated peak activity at a pi of <4.0. On two-dimensional gel electrophoresis, the 10- to 14-kDa FPLC fraction contained at least seven distinct molecules, of which two had a pi of <4.5. Protease treatment reduced the bioactivity of the 10- to 14-kDa FPLC fraction for both resting and activated gamma delta T cells. Murine antibodies raised to the 10- to 14-kDa fraction reacted by enzyme-linked immunosorbent assay with antigens of 10 to 14 kDa in lysate of M. tuberculosis. In addition, gamma delta T cells proliferated in response to an antigen of 10 to 14 kDa present in M. tuberculosis lysate. gamma delta T-cell-stimulating antigen was not found in culture filtrate of M. tuberculosis but was associated,vith the bacterial pellet and lysate of M. tuberculosis. These results provide a preliminary characterization of a 10- to 14-kDa, cell-associated, heat-stable, low-pI protein antigen of M. tuberculosis which is a major stimulus for human gamma delta T cells.
Resumo:
The interaction of 2-amino-6-methylpyridine, 2-picoline and 4-picoline as donors with iodine, 7,7',8,8'-tetracyanoquinodimethane,2,3-dichloro-5,6-dicyano-1,4-benzoquinone, p-chloranil, o-chloranil, 2,4,7-trinitro-9-fluorenone and 2,4,5,7-tetranitro-9-fluorenone as acceptors has been studied by measuring visible and ultraviolet spectra. Infrared, electron paramagnetic and nuclear magnetic resonance spectra have also been obtained. Kinetic parameters have been derived. The results indicate that the charge transfer interaction occurs through the formation of free radicals which is followed by a slow reaction to give a diamagnetic product. However, with iodine, the charge transfer complex formation occurs without the formation of free radicals. The donor site is inferred to be the lone pair of electrons of the amino nitrogen of 2-amino-6-methylpridine whereas for 2- and 4-picolines, the preferred site is lone pair of electrons on the pyridine nitrogen.
Resumo:
The impedance of sealed nickel/cadmium cells is measured at low states-of-charge that correspond to a cell e.m.f. range of 0.0 to 1.3 V. The results show that the impedance exhibits a pronounced maximum between 0.3 and 0.45 V. It is concluded that the impedance maxima are due to physicochemical processes taking place at the nickel oxide electrode. The impedance of the nickel oxide electrode is dominated by three different phenomena: (i) a Ni(II)/Ni(III) reaction between 1.3 and 0.8 V; (ii) a double-layer impedance between 0.8 and 0.3 V; (iii) a hydrogen evolution reaction between 0.3 and 0.0 V.
Resumo:
Likely spatial distributions of network-modifying (and mobile) cations in (oxide) glasses are discussed here. At very low modifier concentrations, the ions form dipoles with non-bridging oxygen centres while, at higher levels of modification, the cations tend to order as a result of Coulombic interactions. Activation energies for cation migration are calculated, assuming that the ions occupy (face-sharing) octahedral sites. It is found that conductivity activation energy decreases markedly with increasing modifier content, in agreement with experiment.
Resumo:
New vibrational Raman features characteristic to the conductive form of polyaniline have been observed with the near-infrared excitation at 1047 nm. Based on an analogy with the resonance Raman spectrum of Michler's ketone in the lowest excited triplet (T-1) state, we consider these features as due to a dynamic structure of a diimino-1,4-phenylene unit in the polyaniline chain exchanging a positive charge very rapidly. This consideration directly leads to a conducting mechanism in which a positive charge migrates from one nitrogen to the other through the conjugated chain of polyaniline.
Resumo:
A theory is developed for diffusion-limited charge transfer on a non-fractally rough electrode. The perturbation expressions are obtained for concentration, current density and measured diffusion-limited current for arbitrary one- and two-dimensional surface profiles. The random surface model is employed for a rough electrode\electrolyte interface. In this model the gross geometrical property of an electrochemically active rough surface - the surface structure factor-is related to the average electrode current, current density and concentration. Under short and long time regimes, various morphological features of the rough electrodes, i.e. excess area (related to roughness slope), curvature, correlation length, etc. are related to the (average) current transients. A two-point Pade approximant is used to develop an all time average current expression in terms of partial morphological features of the rough surface. The inverse problem of predicting the surface structure factor from the observed transients is also described. Finally, the effect of surface roughness is studied for specific surface statistics, namely a Gaussian correlation function. It is shown how the surface roughness enhances the overall diffusion-limited charge transfer current.