948 resultados para Cardiac Output, Low
Resumo:
[EN] That muscular blood flow may reach 2.5 l kg(-1) min(-1) in the quadriceps muscle has led to the suggestion that muscular vascular conductance must be restrained during whole body exercise to avoid hypotension. The main aim of this study was to determine the maximal arm and leg muscle vascular conductances (VC) during leg and arm exercise, to find out if the maximal muscular vasodilatory response is restrained during maximal combined arm and leg exercise. Six Swedish elite cross-country skiers, age (mean +/-s.e.m.) 24 +/- 2 years, height 180 +/- 2 cm, weight 74 +/- 2 kg, and maximal oxygen uptake (VO(2,max)) 5.1 +/- 0.1 l min(-1) participated in the study. Femoral and subclavian vein blood flows, intra-arterial blood pressure, cardiac output, as well as blood gases in the femoral and subclavian vein, right atrium and femoral artery were determined during skiing (roller skis) at approximately 76% of VO(2,max) and at VO(2,max) with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise) and leg skiing (predominantly leg exercise). During submaximal exercise cardiac output (26-27 l min(-1)), mean blood pressure (MAP) (approximately 87 mmHg), systemic VC, systemic oxygen delivery and pulmonary VO2(approximately 4 l min(-1)) attained similar values regardless of exercise mode. The distribution of cardiac output was modified depending on the musculature engaged in the exercise. There was a close relationship between VC and VO2 in arms (r= 0.99, P < 0.001) and legs (r= 0.98, P < 0.05). Peak arm VC (63.7 +/- 5.6 ml min(-1) mmHg(-1)) was attained during double poling, while peak leg VC was reached at maximal exercise with the diagonal technique (109.8 +/- 11.5 ml min(-1) mmHg(-1)) when arm VC was 38.8 +/- 5.7 ml min(-1) mmHg(-1). If during maximal exercise arms and legs had been vasodilated to the observed maximal levels then mean arterial pressure would have dropped at least to 75-77 mmHg in our experimental conditions. It is concluded that skeletal muscle vascular conductance is restrained during whole body exercise in the upright position to avoid hypotension.
Resumo:
[EN] Chronic hypoxia is associated with elevated sympathetic activity and hypertension in patients with chronic pulmonary obstructive disease. However, the effect of chronic hypoxia on systemic and regional sympathetic activity in healthy humans remains unknown. To determine if chronic hypoxia in healthy humans is associated with hyperactivity of the sympathetic system, we measured intra-arterial blood pressure, arterial blood gases, systemic and skeletal muscle noradrenaline (norepinephrine) spillover and vascular conductances in nine Danish lowlanders at sea level and after 9 weeks of exposure at 5260 m. Mean blood pressure was 28 % higher at altitude (P < 0.01) due to increases in both systolic (18 % higher, P < 0.05) and diastolic (41 % higher, P < 0.001) blood pressures. Cardiac output and leg blood flow were not altered by chronic hypoxia, but systemic vascular conductance was reduced by 30 % (P < 0.05). Plasma arterial noradrenaline (NA) and adrenaline concentrations were 3.7- and 2.4-fold higher at altitude, respectively (P < 0.05). The elevation of plasma arterial NA concentration was caused by a 3.8-fold higher whole-body NA release (P < 0.001) since whole-body noradrenaline clearance was similar in both conditions. Leg NA spillover was increased similarly (x 3.2, P < 0.05). These changes occurred despite the fact that systemic O2 delivery was greater after altitude acclimatisation than at sea level, due to 37 % higher blood haemoglobin concentration. In summary, this study shows that chronic hypoxia causes marked activation of the sympathetic nervous system in healthy humans and increased systemic arterial pressure, despite normalisation of the arterial O2 content with acclimatisation.
Resumo:
[EN] BACKGROUND: A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied. METHODS AND RESULTS: To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10 degrees C and +1 degrees C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4+/-0.1 L/min (8%), 0.5+/-0.2 L/min (11%), and 2.2+/-0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis. CONCLUSIONS: These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle.
Resumo:
[EN] To unravel the mechanisms by which maximal oxygen uptake (VO2 max) is reduced with severe acute hypoxia in humans, nine Danish lowlanders performed incremental cycle ergometer exercise to exhaustion, while breathing room air (normoxia) or 10.5% O2 in N2 (hypoxia, approximately 5,300 m above sea level). With hypoxia, exercise PaO2 dropped to 31-34 mmHg and arterial O2 content (CaO2) was reduced by 35% (P < 0.001). Forty-one percent of the reduction in CaO2 was explained by the lower inspired O2 pressure (PiO2) in hypoxia, whereas the rest was due to the impairment of the pulmonary gas exchange, as reflected by the higher alveolar-arterial O2 difference in hypoxia (P < 0.05). Hypoxia caused a 47% decrease in VO2 max (a greater fall than accountable by reduced CaO2). Peak cardiac output decreased by 17% (P < 0.01), due to equal reductions in both peak heart rate and stroke VOlume (P < 0.05). Peak leg blood flow was also lower (by 22%, P < 0.01). Consequently, systemic and leg O2 delivery were reduced by 43 and 47%, respectively, with hypoxia (P < 0.001) correlating closely with VO2 max (r = 0.98, P < 0.001). Therefore, three main mechanisms account for the reduction of VO2 max in severe acute hypoxia: 1) reduction of PiO2, 2) impairment of pulmonary gas exchange, and 3) reduction of maximal cardiac output and peak leg blood flow, each explaining about one-third of the loss in VO2 max.
Resumo:
[EN] BACKGROUND: In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied. METHODS AND RESULTS: HR, Q, oxygen uptake, mean arterial pressure, and leg blood flow were determined at rest and during cycle exercise with and without vagal blockade with glycopyrrolate in 7 healthy lowlanders after 9 weeks' residence at >/=5260 m (ALT). At ALT, glycopyrrolate increased resting HR by 80 bpm (73+/-4 to 153+/-4 bpm) compared with 53 bpm (61+/-3 to 114+/-6 bpm) at sea level (SL). During exercise at ALT, glycopyrrolate increased HR by approximately 40 bpm both at submaximal (127+/-4 to 170+/-3 bpm; 118 W) and maximal (141+/-6 to 180+/-2 bpm) exercise, whereas at SL, the increase was only by 16 bpm (137+/-6 to 153+/-4 bpm) at 118 W, with no effect at maximal exercise (181+/-2 bpm). Despite restoration of maximal HR to SL values, glycopyrrolate had no influence on Q, which was reduced at ALT. Breathing FIO(2)=0.55 at peak exercise restored Q and power output to SL values. CONCLUSIONS: Enhanced parasympathetic neural activity accounts for the lowering of HR during exercise at ALT without influencing Q. The abrupt restoration of peak exercise Q in chronic hypoxia to maximal SL values when arterial PO(2) and SO(2) are similarly increased suggests hypoxia-mediated attenuation of Q.
Resumo:
[EN] 1. The present study examined whether the blood flow to exercising muscles becomes reduced when cardiac output and systemic vascular conductance decline with dehydration during prolonged exercise in the heat. A secondary aim was to determine whether the upward drift in oxygen consumption (VO2) during prolonged exercise is confined to the active muscles. 2. Seven euhydrated, endurance-trained cyclists performed two bicycle exercise trials in the heat (35 C; 40-50 % relative humidity; 61 +/- 2 % of maximal VO2), separated by 1 week. During the first trial (dehydration trial, DE), they bicycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive dehydration and hyperthermia (3.9 +/- 0.3 % body weight loss; 39.7 +/- 0.2 C oesophageal temperature, Toes). In the second trial (control trial), they bicycled for the same period of time while maintaining euhydration by ingesting fluids and stabilizing Toes at 38.2 +/- 0.1 C after 30 min exercise. 3. In both trials, cardiac output, leg blood flow (LBF), vascular conductance and VO2 were similar after 20 min exercise. During the 20 min-exhaustion period of DE, cardiac output, LBF and systemic vascular conductance declined significantly (8-14 %; P < 0.05) yet muscle vascular conductance was unaltered. In contrast, during the same period of control, all these cardiovascular variables tended to increase. After 135 +/- 4 min of DE, the 2.0 +/- 0.6 l min-1 lower blood flow to the exercising legs accounted for approximately two-thirds of the reduction in cardiac output. Blood flow to the skin also declined markedly as forearm blood flow was 39 +/- 8 % (P < 0.05) lower in DE vs. control after 135 +/- 4 min. 4. In both trials, whole body VO2 and leg VO2 increased in parallel and were similar throughout exercise. The reduced leg blood flow in DE was accompanied by an even greater increase in femoral arterial-venous O2 (a-vO2) difference. 5. It is concluded that blood flow to the exercising muscles declines significantly with dehydration, due to a lowering in perfusion pressure and systemic blood flow rather than increased vasoconstriction. Furthermore, the progressive increase in oxygen consumption during exercise is confined to the exercising skeletal muscles.
Resumo:
[EN] Hypoxia affects O2 transport and aerobic exercise capacity. In two previous studies, conflicting results have been reported regarding whether O2 delivery to the muscle is increased with hypoxia or whether there is a more efficient O2 extraction to allow for compensation of the decreased O2 availability at submaximal and maximal exercise. To reconcile this discrepancy, we measured limb blood flow (LBF), cardiac output, and O2 uptake during two-legged knee-extensor exercise in eight healthy young men. They completed studies at rest, at two submaximal workloads, and at peak effort under normoxia (inspired O2 fraction 0.21) and two levels of hypoxia (inspired O2 fractions 0.16 and 0.11). During submaximal exercise, LBF increased in hypoxia and compensated for the decrement in arterial O2 content. At peak effort, however, our subjects did not achieve a higher cardiac output or LBF. Thus O2 delivery was not maintained and peak power output and leg O2 uptake were reduced proportionately. These data are consistent then with the findings of an increased LBF to compensate for hypoxemia at submaximal exercise, but no such increase occurs at peak effort despite substantial cardiac capacity for an elevation in LBF.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
Obiettivo: studio longitudinale di una coorte di gravidanze gemellari e valutazione di eventuali correlazioni tra specifici parametri cardiaci materni ed esito sfavorevole della gravidanza. Metodi: Sono state arruolate in modo prospettico donne con gravidanze gemellari, sottoposte a controlli seriati della funzione cardiaca materna ( 20-23 settimane; 26-29 settimane e 30-33 settimane). Le pazienti in cui il parto si è verificato prima della 34°settimana compiuta di gestazione sono state escluse a priori dallo studio. Specifici parametri cardiaci campionati sono stati confrontati tra il gruppo di gravidanze con esito positivo ed il gruppo di pazienti che hanno sviluppato complicanze nel corso della gravidanza quali: preeclampsia o ipertensione gestazionale, basso peso alla nascita ( SGA: peso neonatale di uno o entrambi i feti < 5° centile per l’epoca di gestazione). Risultati: sono state incluse nello studio 28 gravidanze gemellari,di cui 8 complicate. Durante ogni visita abbiamo osservato un aumento significativo della gittata cardiaca ( CO ) e sistolica ( SV ) ed una caduta delle resistenze vascolari totali ( TVR ) nelle gravidanze gemellari normali vs complicate. Inoltre, CO, pressione arteriosa (BP), frequenza cardiaca ( HR ) e TVR son rimaste invariate nel corso dei controlli ambulatoriali per le gravidanze con esiti sfavorevole, mentre mostravano modificazioni significative ( CO, HR e BDP in aumento; TVR in diminuzione ) nel gruppo di pazienti con esito favorevole della gravidanza. Conclusioni: La valutazione longitudinale della funzione cardiaca materna sembra dimostrare una significativa differenza tra i valori dei parametri cardiaci materni delle gravidanze multiple non complicate, rispetto a quelle complicate da preeclampsia o neonati SGA.
Resumo:
Perfusion CT imaging of the liver has potential to improve evaluation of tumour angiogenesis. Quantitative parameters can be obtained applying mathematical models to Time Attenuation Curve (TAC). However, there are still some difficulties for an accurate quantification of perfusion parameters due, for example, to algorithms employed, to mathematical model, to patient’s weight and cardiac output and to the acquisition system. In this thesis, new parameters and alternative methodologies about liver perfusion CT are presented in order to investigate the cause of variability of this technique. Firstly analysis were made to assess the variability related to the mathematical model used to compute arterial Blood Flow (BFa) values. Results were obtained implementing algorithms based on “ maximum slope method” and “Dual input one compartment model” . Statistical analysis on simulated data demonstrated that the two methods are not interchangeable. Anyway slope method is always applicable in clinical context. Then variability related to TAC processing in the application of slope method is analyzed. Results compared with manual selection allow to identify the best automatic algorithm to compute BFa. The consistency of a Standardized Perfusion Index (SPV) was evaluated and a simplified calibration procedure was proposed. At the end the quantitative value of perfusion map was analyzed. ROI approach and map approach provide related values of BFa and this means that pixel by pixel algorithm give reliable quantitative results. Also in pixel by pixel approach slope method give better results. In conclusion the development of new automatic algorithms for a consistent computation of BFa and the analysis and definition of simplified technique to compute SPV parameter, represent an improvement in the field of liver perfusion CT analysis.
Resumo:
Questo elaborato illustra il problema della determinazione di una tecnica per rendere la misura della cardiac output il più possibile accurata, economica e poco invasiva. A tale scopo è preso in esame un nuovo metodo basato sul modello WindKessel per la stima continua battito a battito di CO e TPR, partendo dall’analisi delle forme d’onda della pressione arteriosa periferica. Tale metodo ideato nel 2007 da T.A. Parlikar considera informazioni pressorie intrabattito e interbattito, in modo da ottenere stime soddisfacenti, che migliorano ulteriormente assumendo una complianza pressione-dipendente. Applicando il metodo a un data set di animali suini, contenente misurazioni della CO di riferimento su base battito-battito, si riscontra un errore di stima complessivo pari a un RMNSE medio variabile tra l’11% ed il 13%, inferiore alla soglia del 15% ritenuta accettabile in letteratura per scopi clinici. Confrontando questi risultati con quelli ottenuti attraverso l’applicazione di altri metodi riportati in letteratura allo stesso set di dati, è stato dimostrato che il metodo risulta tra i migliori. Le CO e TPR stimate, dopo le infusioni farmacologiche endovenose effettuate sugli animali, corrispondono abbastanza fedelmente alle risposte emodinamiche attese. Successivamente viene considerato l’obbiettivo di verificare l’applicabilità della procedura matematica sulla quale si fonda il metodo. Si implementa il procedimento e si applica il metodo su un data set simulato su base battito-battito, comprendente dati relativi a varie condizioni di funzionamento fisiologiche. Le stime di CO e TPR ottenute in questa fase inseguono discretamente le variazioni delle variabili emodinamiche simulate, dimostrandosi migliori nel caso di calibrazione con complianza pressione-dipendente.
Resumo:
In corso di gravidanza normale avvengono modificazioni emodinamiche centrali e periferiche volte a garantire le crescenti richieste nutritive dell'unità feto-placentare. L’ecografia con mezzo di contrasto (CEUS-Contrast Enhanced Ultrasonography) a base di microbolle offre una nuova opportunità di monitorare e quantificare la perfusione utero-placentare in condizioni normali e patologiche. L’ecocardiografia è stata ampiamente usata in medicina umana per valutare l’adattamento morfo-funzionale cardiaco materno durante la gravidanza. Gli scopi di questo lavoro prospettico sono stati di applicare, per la prima volta nella specie equina, un mezzo di contrasto di II generazione (Sonovue®), al fine quantificare la perfusione utero-placentare in corso di gravidanza normale, valutandone gli effetti sul benessere materno-fetale e di descrivere le modificazioni nei parametri ecocardiografici morfometrici e funzionali cardiaci, in particolare relativi alla funzione del ventricolo sinistro nel corso di una gravidanza fisiologica. Due fattrici sane di razza Trottatore sono state monitorate ecograficamente in maniera seriale durante l’intero corso della gravidanza, tramite esame bidimensionale, ecocontrastografia dell'unità utero-placentare, flussimetria Doppler delle arterie uterine, ecocardiografia materna in modalità bidimensionale, M-mode, Doppler e Tissue Doppler Imaging. I neonati sono stati clinicamente monitorati e gli invogli fetali esaminati. Il pattern di microperfusione utero-placentare è valutabile quali-quantitativamente tramite la CEUS e dimostra un’aumento del flusso a livello di microvascolarizzazione uterina con l'avanzare della gravidanza; non è stata rilevata la presenza di microbolle a livello di strutture fetali nè effetti dannosi sul benessere materno-fetale. In questo studio sono state osservate delle modificazioni cardiache materne in corso di gravidanza fisiologica, relative all'aumento della FC, del CO ed in particolare all'aumento delle dimensioni dell'atrio sinistro ed a modificazioni nelle onde di velocità di flusso e tissutali di riempimento del ventricolo sinistro.
Resumo:
La portata media cardiaca, (cardiac output “CO”) è un parametro essenziale per una buona gestione dei pazienti o per il monitoraggio degli stessi durante la loro permanenza nell’unità di terapia intensiva. La stesura di questo elaborato prende spunto sull’articolo di Theodore G. Papaioannou, Orestis Vardoulis, and Nikos Stergiopulos dal titolo “ The “systolic volume balance” method for the non invasive estimation of cardiac output based on pressure wave analysis” pubblicato sulla rivista American Journal of Physiology-Heart and Circulatory Physiology nel Marzo 2012. Nel sopracitato articolo si propone un metodo per il monitoraggio potenzialmente non invasivo della portata media cardiaca, basato su principi fisici ed emodinamici, che usa l’analisi della forma d’onda di pressione e un metodo non invasivo di calibrazione e trova la sua espressione ultima nell’equazione Qsvb=(C*PPao)/(T-(Psm,aorta*ts)/Pm). Questa formula è stata validata dagli autori, con buoni risultati, solo su un modello distribuito della circolazione sistemica e non è ancora stato validato in vivo. Questo elaborato si pone come obiettivo quello di un’analisi critica di questa formula per la stima della portata media cardiaca Qsvb. La formula proposta nell'articolo verrà verificata nel caso in cui la circolazione sistemica sia approssimata con modelli di tipo windkessel. Dallo studio svolto emerge il fatto che la formula porta risultati con errori trascurabili solo se si approssima la circolazione sistemica con il modello windkessel classico a due elementi (WK2) e la portata aortica con un’onda rettangolare. Approssimando la circolazione sistemica con il modello windkessel a tre elementi (WK3), o descrivendo la portata aortica con un’onda triangolare si ottengono risultati con errori non più trascurabili che variano dal 7%-9% nel caso del WK2 con portata aortica approssimata con onda triangolare ad errori più ampi del 20% nei i casi del WK3 per entrambe le approssimazioni della portata aortica.
Resumo:
BACKGROUND: Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. MATERIALS AND METHODS: Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. RESULTS: After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. CONCLUSIONS: In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP.