974 resultados para Cape Bounty – Soil IOrganic Matter Characterization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aimed to assess the moisture and density of the soil, the amount of water stored in the profile, and the average soil's porosity with Eucalyptus grandis reforestation, compared to bare soil. The study areas are located in the Paulista region, in So Paulo, Brazil. The samples were collected in layers of 0, 20, 40, 60, 100 and 300 cm, in the months of April, June, August and October 2008. The results show that the density is lower and the porosity is higher in Eucalyptus forest soil compared to bare soil, due to the higher content of organic matter in forest leaf litter. Furthermore, the forest soil has a lower amount of water stored in profile than the bare soil without vegetation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relief is regarded as the abiotic factor most strongly influencing pedogenic processes at a local scale. The spatial correlations between the composition of the clay fraction (iron - Fe and aluminum - Al oxides, kaolinite and organic matter - OM) and contents of available phosphorus (P) of an Oxisol were evaluated at hillslope scale under sugarcane cultivation. A total of 119 samples were collected at intersection points on a 100. . 100. m georeferenced grid of regularly spaced points 10. m apart in the 0.2-0.4. m depth in an area consisting of two landform components namely: component I (an area with a linear hillslope curvature), and component II (one with a concave-convex hillslope curvature). Soil OM and available P contents were subjected to descriptive statistics and geostatistical analyses in order to assess their variability and spatial dependence. All attributes studied were spatially dependent. Available phosphorus had positive spatial correlation with high crystalline goethite, hematite and gibbsite. Identifying small hillslope curvatures is useful with a view to better understanding their relationships with soil organic matter and available phosphorus, as well as kaolinite and Fe and Al oxide attributes. A simple correlation analysis by itself is inadequate to relate attributes, which requires a supplemental, geostatistical technique. 2012 Elsevier B.V..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. 2012 Antarctic Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decomposition of plant material influences soil aggregation dynamics in ways that are still poorly understood, especially for Oxisols, in which oxides are believed to play a dominant role. In an incubation experiment, we investigated (i) the effect of plant material addition from selected monocot and dicot species on soil organic C (SOC), carbohydrate composition, fungal and total microbial biomass, and aggregation of an Oxisol; and (ii) the relationship among these properties and C mineralization patterns. The experiment was carried out at 25 C for 180 d after addition of 11 plant materials (4 g C kg-1 soil) and a control (no plant material added). Mineralization of C during the incubation was described considering two pools of C (labile and non-labile) using a first-order plus linear fitting. Compared to the control, corn materials showed larger pentose input, greater mineralization rates for the non-labile C pool (k), greater soil pentose content (xylose + arabinose) and larger mean weight diameter of soil water-stable aggregates at 180 d of incubation. These effects were independent of changes in SOC content, suggesting that total C accrual and macroaggregation may be decoupled processes in this Oxisol. Our results support the hypothesis that the non-labile plant C pool contributes to the long-lasting stability of macroaggregates of this Oxisol and that this effect is mediated by plant and soil pentoses. We propose that plant pentose content and the decomposition rate of the slow pool (k) are useful parameters for the prediction of plant effects on aggregation dynamics of Oxisols and the selection of soil conservation practices. 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997-98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha -1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0-0.1 and 0.1-0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L -1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L-1 CaCl 2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric-perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0-0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L-1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.). 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impacts on the environment and soil biological activity result in changes in the processes of formation of biogenic and fisiogenic aggregates. Aiming to evaluate the influence on physical and biological genesis of aggregates of Cerrado soils and determine the main environmental factors that determine the characteristics of households in the area of production under integrated crop-livestock (ICL), was developed this study in Farm Cabeceira, Maracaju-MS, in areas of ICL. The areas evaluated were: Savana, pasture/maize, corn/cotton and cotton/soybeans being evaluated during the dry (May/2009) and rainy (March 2010) season. To identify the pathways of aggregation were used morphological patterns, and established three clusters: fisiogenic, biogenic and intermediates. The aggregates were analyzed for exchangeable cations, carbon and aggregate stability, soil was analyzed for the exchangeable cations, particle size fractionation of soil organic matter, oxidizable fractions of total organic carbon, particle size analysis and soil macrofauna. In all areas studied, in the dry season, the highest values were quantified aggregate intermediates, while in the rainy season, in general, no differences were observed aggregates formed by different routes in areas except cotton/soybeans. The aggregates showed positive correlation with biogenic carbon and were found in lesser amounts compared to fisiogenic and intermediates. The different types of aggregates formed, besides having different characteristics morphological also differ as to chemical characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenao de Aperfeioamento de Pessoal de Nvel Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ps-graduao em Agronomia (Cincia do Solo) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenao de Aperfeioamento de Pessoal de Nvel Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenao de Aperfeioamento de Pessoal de Nvel Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundao de Amparo Pesquisa do Estado de So Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ps-graduao em Agronomia (Energia na Agricultura) - FCA