993 resultados para Camp sites, facilities, etc.
Using morphological traits to identify persistent lucernes for dryland agriculture in NSW, Australia
Resumo:
This paper reports on several studies conducted to better understand the variability between lucerne cultivars and lines, and use this to predict persistence in dryland grazing pastures in eastern Australia. Morphological traits of 20 cultivars/lines were measured in irrigated and dryland spaced plant experiments. Studies were also conducted to describe variation among lucernes in their utilisation of starch and responses to water deficit, pests and diseases. Multiple regression analyses were used to develop simple models where the measured traits could be used to predict persistence of lucerne lines in dryland evaluation experiments. Although there was significant variation among cultivars/lines in most measured traits, no single trait reliably predicted persistence of cultivars/lines in dryland evaluation experiments. However, variation in persistence at both sites could be explained by models developed by multiple regression using differences in the mean lengths of the longest stems at 10% flower in summer and winter. Persistent lucernes were those that had relatively long stems in summer and short stems in winter. Water use efficiencies, starch utilisation patterns and resistances to pests and diseases of different lucernes provided some improvement to this simple model, but these improvements were not consistent.
Resumo:
Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat(Triticum aestivum L) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses.
Resumo:
Weed management is one of the most important economic and agronomic issues facing farmers in Australia's grain regions. Weed species occurrence and abundance was monitored between 1997 and 2000 on 46 paddocks (sites) across 18 commercial farms located in the Northern Grain Region. The sites generally fell within 4 disjunct regions, from south to north: Liverpool Plains, Moree, Goondiwindi and Kingaroy. While high species richness was found (139 species or species groups), only 8 species occurred in all 4 regions and many (56 species) only occurred at 1 site or region. No species were observed at every site but 7 species (Sonchus spp., Avena spp., Conyza spp., Echinochloa spp., Convolvulus erubescens, Phalaris spp. and Lactuca serriola) were recorded on more than 70% of sites. The average number of species observed within crops after treatment and before harvest was less than 13. Species richness tended to be higher in winter pulse crops, cotton and in fallows, but overall was similar at the different sampling seasons (summer v. winter). Separate species assemblages associated with the Goondiwindi and Kingaroy regions were identified by correspondence analysis but these appeared to form no logical functional group. The species richness and density was generally low, demonstrating that farmers are managing weed populations effectively in both summer and winter cropping phases. Despite the apparent adoption of conservation tillage, an increase in opportunity cropping and the diversity of crops grown (13) there was no obvious effect of management practices on weed species richness or relative abundance. Avena spp. and Sonchus spp. were 2 of the most dominant weeds, particularly in central and southern latitudes of the region; Amaranthus spp. and Raphanus raphanistrum were the most abundant species in the northern part of the region. The ubiquity of these and other species shows that continued vigilance is required to suppress weeds as a management issue.
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.
Resumo:
Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.
Resumo:
Invasive plants are regarded as a major threat to biodiversity worldwide. Yet, in some cases, invasive plants now perform important ecological functions. For example, fleshy-fruited invasive plants provide food that supports indigenous frugivore populations. How can the disparate goals of conservation versus invasive weed control be managed? We suggest using the fruit characteristics of the invasive plant to select replacement indigenous plants that are functionally similar from the perspective of frugivores. These could provide replacement food resources at sites where plants with these characteristics are part of the goal plant community and where such plants would not otherwise regenerate. Replacement plants could also redirect seed dispersal processes to favour indigenous, rather than invasive, plant species. We investigated the utility of this approach by ranking all indigenous fleshy-fruited plant species from a region using a simple model that scored species based upon measures of fruit phenology, morphology, conspicuousness and accessibility relative to a target invasive species, Lantana (Lantana camara). The model successfully produced high scores for indigenous plant species that were used by more of the frugivores of Lantana than a random selection of plants, suggesting that this approach warrants further investigation.
Resumo:
The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.
Resumo:
Left: Freddy Godshaw (Gottschalk); right: Peter Zander
Resumo:
The impact of cropping histories (sugarcane, maize and soybean), tillage practices (conventional tillage and direct drill) and fertiliser N in the plant and 1st ratoon (1R) crops of sugarcane were examined in field trials at Bundaberg and Ingham. Average yields at Ingham (Q200) and Bundaberg (Q151) were quite similar in both the plant crop (83 t/ha and 80 t/ha, respectively) and the 1R (89 t/ha v 94 t/ha, respectively), with only minor treatment effects on CCS at each site. Cane yield responses to tillage, break history and N fertiliser varied significantly between sites. There was a 27% yield increase in the plant crop from the soybean fallow at Ingham, with soybeans producing a yield advantage over continuous cane, but there were no clear break effects at Bundaberg - possibly due to a complex of pathogenic nematodes that responded differently to soybeans and maize breaks. There was no carryover benefit of the soybean break into the 1R crop at Ingham, while at Bundaberg the maize break produced a 15% yield advantage over soybeans and continuous cane. The Ingham site recorded positive responses to N fertiliser addition in both the plant (20% yield increase) and 1R (34% yield increase) crops, but there was negligible carryover benefit from plant crop N in the 1R crop, or of a reduced N response after a soybean rotation. By contrast, the Bundaberg site showed no N response in any history in the plant crop, and only a small (5%) yield increase with N applied in the 1R crop. There was again no evidence of a reduced N response in the 1R crop after a soybean fallow. There were no significant effects of tillage on cane yields at either site, although there were some minor interactions between tillage, breaks and N management in the 1R crop at both sites. Crop N contents at Bundaberg were more than 3 times those recorded at Ingham in both the plant and 1R crops, with N concentrations in millable stalk at Ingham suggesting N deficiencies in all treatments. There was negligible additional N recovered in crop biomass from N fertiliser application or soybean residues at the Ingham site. There was additional N recovered in crop biomass in response to N fertiliser and soybean breaks at Bundaberg, but effects were small and fertiliser use efficiencies poor. Loss pathways could not be quantified, but denitrification or losses in runoff were the likely causes at Ingham while leaching predominated at Bundaberg. Results highlight the complexity involved in developing sustainable farming systems for contrasting soil types and climatic conditions. A better understanding of key sugarcane pathogens and their host range, as well as improved capacity to predict in-crop N mineralisation, will be key factors in future improvements to sugarcane farming systems.
Resumo:
Lantana camara is a recognized weed of worldwide significance due to its extensive distribution and its impacts on primary industries and nature conservation. However, quantitative data on the impact of the weed on soil ecosystem properties are scanty, especially in SE Australia, despite the pervasive presence of the weed along its coastal and inland regions. Consequently, mineral soils for physicochemical analyses were collected beneath and away from L. camara infestations in four sites west of Brisbane, SE Australia. These sites (hoop pine plantation, cattle farm, and two eucalyptus forests with occasional grazing and a fire regime, respectively) vary in landscape and land-use types. Significant site effect was more frequently observed than effect due to invasion status. Nonetheless, after controlling for site differences, ~50% of the 23 soil traits examined differed significantly between infested and non-infested soils. Moisture, pH, Ca, total and organic C, and total N (but not exchangeable N in form of NO3-) were significantly elevated, while sodium, chloride, copper, iron, sulfur, and manganese, many of which can be toxic to plant growth if present in excess levels, were present at lower levels in soils supporting L. camara compared to soils lacking the weed. These results indicate that L. camara can improve soil fertility and influence nutrient cycling, making the substratum ideal for its own growth and might explain the ability of the weed to outcompete other species, especially native ones.
Resumo:
Point sources of wastewater pollution, including effluent from municipal sewage treatment plants and intensive livestock and processing industries, can contribute significantly to the degradation of receiving waters (Chambers et al. 1997; Productivity Commission 2004). This has led to increasingly stringent local wastewater discharge quotas (particularly regarding Nitrogen, Phosphorous and suspended solids), and many municipal authorities and industry managers are now faced with upgrading their existing treatment facilities in order to comply. However, with high construction, energy and maintenance expenses and increasing labour costs, traditional wastewater treatment systems are becoming an escalating financial burden for the communities and industries that operate them. This report was generated, in the first instance, for the Burdekin Shire Council to provide information on design aspects and parameters critical for developing duckweed-based wastewater treatment (DWT) in the Burdekin region. However, the information will be relevant to a range of wastewater sources throughout Queensland. This information has been collated from published literature and both overseas and local studies of pilot and full-scale DWT systems. This report also considers options to generate revenue from duckweed production (a significant feature of DWT), and provides specifications and component cost information (current at the time of publication) for a large-scale demonstration of an integrated DWT and fish production system.
Resumo:
After more than 30 years in which ‘Tifgreen’ and ‘Tifdwarf’ were the only greens-quality varieties available, the choice for golf courses and bowls clubs in northern Australia has been expanded to include six new Cynodon hybrids [Cynodon dactylon (L.) Pers x Cynodon transvaalensis Burtt-Davy]. Five of these – ‘Champion Dwarf’ (Texas), ‘MS-Supreme’ (Mississippi), FloraDwarf™ (Florida), ‘TifEagle’ (Georgia), MiniVerde™ (Arizona) - are from US breeding programs, while the sixth, ‘TL2’ (marketed as Novotek™) was selected in north Queensland. The finer, denser and lower growing habit of the “ultradwarf” cultivars allows very low mowing heights (e.g. 2.5 mm) to be imposed, resulting in denser and smoother putting and bowls surfaces. In addition to the Cynodon hybrids, four new greens quality seashore paspalum (Paspalum vaginatum O. Swartz) cultivars including ‘Sea Isle 2000’, Sea Isle Supreme™, Velvetene™ and Sea Dwarf™ (where tolerance of salty water is required) expands the range of choices for greens in difficult environments. The project was developed to determine (a) the appropriate choice of cultivar for different environments and budgets, and (b) best management practices for the new cultivars which differ from the Cynodon hybrid industry standards ‘Tifgreen’ and ‘Tifdwarf’. Management practices, particularly fertilising, mowing heights and frequency, and thatch control were investigated to determine optimum management inputs and provide high quality playing surfaces with the new grasses. To enable effective trialling of these new and old cultivars it was essential to have a number of regional sites participating in the study. Drought and financial hardship of many clubs presented an initial setback with numerous clubs wanting to be involved in the study but were unable to commit due to their financial position at the time. The study was fortunate to have seven regional sites from Queensland, New South Wales, Victoria and South Australia volunteer to be involved in the study which would add to the results being collected at the centralised test facility being constructed at DEEDI’s Redlands Research Station. The major research findings acquired from the eight trial sites included: • All of the new second generation “ultradwarf” couchgrasses tend to produce a large amount of thatch with MiniVerde™ being the greatest thatch producer, particularly compared to ‘Tifdwarf’ and ‘Tifgreen’. The maintenance of the new Cynodon hybrids will require a program of regular dethatching/grooming as well as regular light dustings of sand. Thatch prevention should begin 3 to 4 weeks after planting a new “ultradwarf” couchgrass green, with an emphasis on prevention rather than control. • The “ultradwarfs” produced faster green speeds than the current industry standards ‘Tifgreen’ and ‘Tifdwarf’. However, all Cynodon hybrids were considerably faster than the seashore paspalums (e.g. comparable to the speed diference of Bentgrass and couchgrass) under trial conditions. Green speed was fastest being cut at 3.5 mm and rolled (compared to 3.5 mm cut, no roll and 2.7 mm cut, no roll). • All trial sites reported the occurrence of disease in the Cynodon hybrids with the main incidence of disease occurring during the dormancy period (autumn and winter). The main disease issue reported was “patch diseases” which includes both Gaumannomyces and Rhizoctonia species. There was differences in the severity of the disease between cultivars, however, the severity of the disease was not consistent between cultivars and is largely attributed to an environment (location) effect. In terms of managing the occurrence of disease, the incidence of disease is less severe where there is a higher fertility rate (about 3 kgN/100m2/year) or a preventitatve fungicide program is adopted. • Cynodon hybrid and seashore paspalum cultivars maintained an acceptable to ideal surface being cut between 2.7 mm and 5.0 mm. “Ultradwarf” cultivars can tolerate mowing heights as low as 2.5 mm for short periods but places the plant under high levels of stress. Greens being maintained at a continually lower cutting height (e.g. 2.7 mm) of both species is achievable, but would need to be cut daily for best results. Seashore paspalums performed best when cut at a height of between 2.7 mm and 3.0 mm. If a lower cutting height is adopted, regular and repeated mowings are required to reduce scalping and produce a smooth surface. • At this point in time the optimum rate of nitrogen (N) for the Cynodon hybrids is 3 kg/100m2/year and while the seashore paspalums is 2 to 3 kg/100m2/year. • Dormancy occurred for all Cynodon and seashore paspalum culitvars from north in Brisbane (QLD) to south in Mornington Peninsula (VIC) and west to Novar Gardens (SA). Cynodon and Paspalum growth in both Victoria and South Australia was less favourable as a result of the cooler climates. • After combining the data collected from all eight sites, the results indicated that there can be variation (e.g. turfgrass quality, colour, disease resistance, performace) depending on the site and climatic conditions. Such evidence highlights the need to undertake genotype by environment (G x E) studies on new and old cultivars prior to conversion or establishment. • For a club looking to select either a Cynodon hybrid or seashore paspalum cultivar for use at their club they need to: - Review the research data. - Look at trial plots. - Inspect greens in play that have the new grasses. - Select 2 to 3 cultivars that are considered to be the better types. - Establish them in large (large enough to putt on) plots/nursery/practice putter. Ideally the area should be subjected to wear. - Maintain them exactly as they would be on the golf course/lawn bowls green. This is a critical aspect. Regular mowing, fertilising etc. is essential. - Assess them over at least 2 to 3 years. - Make a selection and establish it in a playing green so that it is subjected to typical wear.
Resumo:
Queensland is the only state with Jungle perch. Development and restoration of their fisheries will attract interstate anglers, creating economic benefits. Jungle perch have been successfully spawned on numerous occasions by DEEDI, but larval survival beyond day 6 has been a problem. The larval rearing problem must be overcome to progress restoration and development of the Jungle perch fishery. Key areas requiring investigation are brood stock nutrition, feeding cues and optimal larval feeds. Following successful production of fingerlings, an evaluation of the reintroduction of fingerlings at selected sites is required to determine and the guide success of the stocking program.
Resumo:
Producer Demonstration Site (PDS) - Funding to accommodate the establishment of 14 PDS sites over 3 years. Implementation of PDS to increase research adoption and practice change in Queensland.