988 resultados para Ca2 influx


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially available LaBr3:5% Ce3+ scintillators show with photomultiplier tube readout about 2.7% energy resolution for the detection of 662 keV γ-rays. Here we will show that by co-doping LaBr3:Ce3+ with Sr2+ or Ca2+ the resolution is improved to 2.0%. Such an improvement is attributed to a strong reduction of the scintillation light losses that are due to radiationless recombination of free electrons and holes during the earliest stages (1â10 ps) inside the high free charge carrier density parts of the ionization track.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the effects of Li+, Na+, Mg2+, Ca2+, Sr2+, and Ba2+ co-doping on the scintillation properties of LaBr3:5%Ce3+. Pulse-height spectra of various gamma and X-ray sources with energies from 8 keV to 1.33 MeV were measured from which the values of light yield and energy resolution were derived. Sr2+ and Ca2+ co-doped crystals showed excellent energy resolution as compared to standard LaBr3:Ce. The proportionality of the scintillation response to gamma and X-rays of Ca2+, Sr2+, and Ba2+ co-doped samples also considerably improves. The effects of the co-dopants on emission spectra, decay time, and temperature stability of the light yield were studied. Multiple thermoluminescence glow peaks, decrease of the light yield at temperatures below 295 K, and additional long scintillation decay components were observed and related to charge carrier traps appearing in LaBr3:Ce3+ with Ca2+, Sr2+, and Ba2+ co-doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cardiac muscle, a number of posttranslational protein modifications can alter the function of the Ca(2+) release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor (RyR). During every heartbeat RyRs are activated by the Ca(2+)-induced Ca(2+) release mechanism and contribute a large fraction of the Ca(2+) required for contraction. Some of the posttranslational modifications of the RyR are known to affect its gating and Ca(2+) sensitivity. Presently, research in a number of laboratories is focused on RyR phosphorylation, both by PKA and CaMKII, or on RyR modifications caused by reactive oxygen and nitrogen species (ROS/RNS). Both classes of posttranslational modifications are thought to play important roles in the physiological regulation of channel activity, but are also known to provoke abnormal alterations during various diseases. Only recently it was realized that several types of posttranslational modifications are tightly connected and form synergistic (or antagonistic) feed-back loops resulting in additive and potentially detrimental downstream effects. This review summarizes recent findings on such posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a perspective for future work trying to understand the ramifications of crosstalk in these multiple signaling pathways. Clarifying these complex interactions will be important in the development of novel therapeutic approaches, since this may form the foundation for the implementation of multi-pronged treatment regimes in the future. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels are a family of ion channels activated by the binding of cyclic nucleotides. Endogenous channels have been used to measure cyclic nucleotide signals in photoreceptor outer segments and olfactory cilia for decades. Here we have investigated the subcellular localization of cGMP signals by monitoring CNG channel activity in response to agonists that activate either particulate or soluble guanylyl cyclase. CNG channels were heterologously expressed in either human embryonic kidney (HEK)-293 cells that stably overexpress a particulate guanylyl cyclase (HEK-NPRA cells), or cultured vascular smooth muscle cells (VSMCs). Atrial natriuretic peptide (ANP) was used to activate the particulate guanylyl cyclase and the nitric oxide donor S-nitroso-n-acetylpenicillamine (SNAP) was used to activate the soluble guanylyl cyclase. CNG channel activity was monitored by measuring Ca2+ or Mn2+ influx through the channels using the fluorescent dye, fura-2. We found that in HEK-NPRA cells, ANP-induced increases in cGMP levels activated CNG channels in a dose-dependent manner (0.05-10 nM), whereas SNAP (0.01-100 microM) induced increases in cGMP levels triggered little or no activation of CNG channels (P < 0.01). After pretreatment with 100 microM 3-isobutyl-1-methylxanthine (IBMX), a nonspecific phosphodiesterase inhibitor, ANP-induced Mn2+ influx through CNG channels was significantly enhanced, while SNAP-induced Mn2+ influx remained small. In contrast, we found that in the presence of IBMX, both 1 nM ANP and 100 microM SNAP triggered similar increases in total cGMP levels. We next sought to determine if cGMP signals are compartmentalized in VSMCs, which endogenously express particulate and soluble guanylyl cyclase. We found that 10 nM ANP induced activation of CNG channels more readily than 100 muM SNAP; whereas 100 microM SNAP triggered higher levels of total cellular cGMP accumulation. These results suggest that cGMP signals are spatially segregated within cells, and that the functional compartmentalization of cGMP signals may underlie the unique actions of ANP and nitric oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity-dependent alterations of synaptic transmission important for learning and memory are often induced by Ca(2+) signals generated by depolarization. While it is widely assumed that Ca(2+) is the essential transducer of depolarization into cellular plasticity, little effort has been made to test whether Ca(2+)-independent responses to depolarization might also induce memory-like alterations. It was recently discovered that peripheral axons of nociceptive sensory neurons in Aplysia display long-lasting hyperexcitability triggered by conditioning depolarization in the absence of Ca(2+) entry (using nominally Ca(2+)-free solutions containing EGTA, "0Ca/EGTA") or the absence of detectable Ca(2+) transients (adding BAPTA-AM, "0Ca/EGTA/BAPTA-AM"). The current study reports that depolarization of central ganglia to approximately 0 mV for 2 min in these same solutions induced hyperexcitability lasting >1 h in sensory neuron processes near their synapses onto motor neurons. Furthermore, conditioning depolarization in these solutions produced a 2.5-fold increase in excitatory postsynaptic potential (EPSP) amplitude 1-3 h afterward despite a drop in motor neuron input resistance. Depolarization in 0 Ca/EGTA produced long-term potentiation (LTP) of the EPSP lasting > or = 1 days without changing postsynaptic input resistance. When re-exposed to extracellular Ca(2+) during synaptic tests, prior exposure to 0Ca/EGTA or to 0Ca/EGTA/BAPTA-AM decreased sensory neuron survival. However, differential effects on neuronal health are unlikely to explain the observed potentiation because conditioning depolarization in these solutions did not alter survival rates. These findings suggest that unrecognized Ca(2+)-independent signals can transduce depolarization into long-lasting synaptic potentiation, perhaps contributing to persistent synaptic alterations following large, sustained depolarizations that occur during learning, neural injury, or seizures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurogranin (Ng) is a postsynaptic IQ-motif containing protein that accelerates Ca(2+) dissociation from calmodulin (CaM), a key regulator of long-term potentiation and long-term depression in CA1 pyramidal neurons. The exact physiological role of Ng, however, remains controversial. Two genetic knockout studies of Ng showed opposite outcomes in terms of the induction of synaptic plasticity. To understand its function, we test the hypothesis that Ng could regulate the spatial range of action of Ca(2+)/CaM based on its ability to accelerate the dissociation of Ca(2+) from CaM. Using a mathematical model constructed on the known biochemistry of Ng, we calculate the cycle time that CaM molecules alternate between the fully Ca(2+) saturated state and the Ca(2+) unbound state. We then use these results and include diffusion of CaM to illustrate the impact that Ng has on modulating the spatial profile of Ca(2+)-saturated CaM within a model spine compartment. Finally, the first-passage time of CaM to transition from the Ca(2+)-free state to the Ca(2+)-saturated state was calculated with or without Ng present. These analyses suggest that Ng regulates the encounter rate between Ca(2+) saturated CaM and its downstream targets during postsynaptic Ca(2+) transients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na(+)/Ca(2+) exchangers (NCX) constitute a major Ca(2+) export system that facilitates the re-establishment of cytosolic Ca(2+) levels in many tissues. Ca(2+) interactions at its Ca(2+) binding domains (CBD1 and CBD2) are essential for the allosteric regulation of Na(+)/Ca(2+) exchange activity. The structure of the Ca(2+)-bound form of CBD1, the primary Ca(2+) sensor from canine NCX1, but not the Ca(2+)-free form, has been reported, although the molecular mechanism of Ca(2+) regulation remains unclear. Here, we report crystal structures for three distinct Ca(2+) binding states of CBD1 from CALX, a Na(+)/Ca(2+) exchanger found in Drosophila sensory neurons. The fully Ca(2+)-bound CALX-CBD1 structure shows that four Ca(2+) atoms bind at identical Ca(2+) binding sites as those found in NCX1 and that the partial Ca(2+) occupancy and apoform structures exhibit progressive conformational transitions, indicating incremental regulation of CALX exchange by successive Ca(2+) binding at CBD1. The structures also predict that the primary Ca(2+) pair plays the main role in triggering functional conformational changes. Confirming this prediction, mutagenesis of Glu(455), which coordinates the primary Ca(2+) pair, produces dramatic reductions of the regulatory Ca(2+) affinity for exchange current, whereas mutagenesis of Glu(520), which coordinates the secondary Ca(2+) pair, has much smaller effects. Furthermore, our structures indicate that Ca(2+) binding only enhances the stability of the Ca(2+) binding site of CBD1 near the hinge region while the overall structure of CBD1 remains largely unaffected, implying that the Ca(2+) regulatory function of CBD1, and possibly that for the entire NCX family, is mediated through domain interactions between CBD1 and the adjacent CBD2 at this hinge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory depend on neuronal alterations induced by electrical activity. Most examples of activity-dependent plasticity, as well as adaptive responses to neuronal injury, have been linked explicitly or implicitly to induction by Ca(2+) signals produced by depolarization. Indeed, transient Ca(2+) signals are commonly assumed to be the only effective transducers of depolarization into adaptive neuronal responses. Nevertheless, Ca(2+)-independent depolarization-induced signals might also trigger plastic changes. Establishing the existence of such signals is a challenge because procedures that eliminate Ca(2+) transients also impair neuronal viability and tolerance to cellular stress. We have taken advantage of nociceptive sensory neurons in the marine snail Aplysia, which exhibit unusual tolerance to extreme reduction of extracellular and intracellular free Ca(2+) levels. The axons of these neurons exhibit a depolarization-induced memory-like hyperexcitability that lasts a day or longer and depends on local protein synthesis for induction. Here we show that transient localized depolarization of these axons in an excised nerve-ganglion preparation or in dissociated cell culture can induce short- and intermediate-term axonal hyperexcitability as well as long-term protein synthesis-dependent hyperexcitability under conditions in which Ca(2+) entry is prevented (by bathing in nominally Ca(2+) -free solutions containing EGTA) and detectable Ca(2+) transients are eliminated (by adding BAPTA-AM). Disruption of Ca(2+) release from intracellular stores by pretreatment with thapsigargin also failed to affect induction of axonal hyperexcitability. These findings suggest that unrecognized Ca(2+)-independent signals exist that can transduce intense depolarization into adaptive cellular responses during neuronal injury, prolonged high-frequency activity, or other sustained depolarizing events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca2+ and an efflux of cytoplasmic proteins. In order to ensure cellular survival, lesions have to be identified, plugged and removed from the membrane. The Ca2+-driven fusion of lysosomes with the plasma membrane leads to hydrolysis of sphingomyelin by acid sphingomyelinase and a formation of ceramide platforms in the outer leaflet of the lipid bilayer. We propose that the negative curvature, promoted by tighter packing of lipids in the outer layer, leads to an inward vesiculation of the damaged area for its endocytotic uptake and internal degradation. In contrast, the activation of neutral sphingomyelinase triggers the production of ceramide within the inner leaflet of the lipid bilayer, thereby promoting an outward curvature, which enables the cell to shed the membrane-containing toxin pore into the extracellular space. In this process, ceramide is supported by members of the annexin protein family which act as Ca2+ sensors and as membrane fusion agents.