971 resultados para CYTOPLASMIC INCOMPATIBILITY
Resumo:
A common side effect of radiotherapy used in the treatment of oral cancer is the occurrence of structural and physiological alterations of the salivary glands due to exposure to ionizing radiation, as demonstrated by conditions such as decreased salivary flow. The present study evaluated ultrastructural alterations in the parotid glands of rats receiving a fractionated dose (1,500-cGy) of radiation emitted by a Cesium-137 source and rats that were not subjected to ionizing radiation. After sacrifice, the parotid glands were removed and examined by transmission electron microscopy. Damage such as cytoplasmic vacuolization, dilatation of the endoplasmic reticulum and destruction of mitochondria, as well as damage to the cellular membrane of acinar cells, were observed. These findings lead to the conclusion that ionizing radiation promotes alterations in the glandular parenchyma, and that these alterations are directly related to the dose level of absorbed radiation. Certain phenomena that appear in the cytoplasm and nuclear material indicate that ionizing radiation causes acinar cell death (apoptosis).
Resumo:
OBJECTIVE: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins. MATERIALS AND METHODS: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry. RESULTS: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. CONCLUSIONS: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
The aim of this study was to evaluate the inflammatory response kinetics after experimental inoculation with BCG in the primitive Arius sp. fish. The BCG was applied through the intramuscular injection in the caudal peduncular region, and the samples were collected for the analyses at days 1, 3, 7, 14, 21, and 33 post-injection. Acute phase inflammatory infiltrate was characterized by the predominant mononuclear cells, intersticial edema, and muscular tissue necrosis. As the inflammatory response evolved, a large number of multinuclear giant cells were formed containing the BCG. These giant cells were positive for the S100 protein at the histochemical analysis, which demonstrate the macrofage activity, confirmed by the ultra-structural analysis showing the lack of the cytoplasmic membrane enveloping the many nuclei within the giant cell. These results led to the conclusion that Arius sp. fish injected with the BCG showed a difuse inflammatory response characterized by a large number of mononuclear cells, absence of granuloma formation, and predominant giant cells.
Resumo:
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility ( het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer ( HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated ""gene dumps'' and, perhaps, simultaneously, as "" gene factories''.
Resumo:
Non-alcoholic fatty liver disease (NAFLD) encompasses the whole spectrum of steatosis, nonalcoholic steatohepatitis (NASH), and NASH-related cirrhosis (NASH/Cir). Although molecular advances have been made in this field, the pathogenesis of NAFLD is not completely understood. The gene expression profiling associated to NASH/Cir was assessed, in an attempt to better characterize the pathways involved in its etiopathogenesis. Methods: In the first step, we used cDNA microarray to evaluate the gene expression profiles in normal liver (n=3) and NASH/Cir samples (n=3) by GeneSifter (TM) analysis to identify differentially expressed genes and biological pathways. Second, tissue microarray was used to determine immunohistochemical expression of phosphorylated mTOR and 4E-BP1 in 11 normal liver samples, 10 NASH/Cir samples and in 37 samples of cirrhosis of other etiologies to further explore the involvement of the mTOR pathway evidenced by the gene expression analysis. Results: 138 and 106 genes were, respectively, up and down regulated in NASH/Cir in comparison to normal liver. Among the 9 pathways identified as significantly modulated in NASH/Cir, the participation of the mTOR pathway was confirmed, since expression of cytoplasmic and membrane phospho-mTOR were higher in NASH/Cir in comparison to cirrhosis of other etiologies and to normal liver. Conclusions: Recent findings have suggested a role for the cellular ""nutrient sensor"" mTOR in NAFLD and the present study corroborates the participation of this pathway in NASH/Cir. Phospho-mTOR evaluation might be of clinical utility as a potential marker for identification of NASH/Cir in cases mistakenly considered as cryptogenic cirrhosis owing to paucity of clinical data.
Resumo:
Background: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings: Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.
Resumo:
Background: Neutrophils are the most abundant leukocytes in peripheral blood and represent one of the most important elements of innate immunity. Recent subcellular proteomic studies have focused on the identification of human neutrophil proteins in various subcellular membrane and granular fractions. Although there are relatively few studies dealing with the analysis of the total extract of human neutrophils, many biological problems such as the role of chemokines, adhesion molecules, and other activating inputs involved in neutrophil responses and signaling can be approached on the basis of the identification of the total cellular proteins. Results: Using gel-LC-MS/MS, 251 total cellular proteins were identified from resting human neutrophils. This is more than ten times the number of proteins identified by an initial proteome analysis of human neutrophils and almost five times the number of proteins identified by the first 2-DE map of extracts of rat polymorphonuclear leukocytes. Most of the proteins identified in the present study are well-known, but some of them, such as neutrophil-secreted proteins and centaurin beta-1, a cytoplasmic protein involved in the regulation of NF-kappa B activity, are described here for the first-time. Conclusion: The present report provides new information about the protein content of human neutrophils. Importantly, our study resulted in the discovery of a series of proteins not previously reported to be associated with human neutrophils. These data are relevant to the investigation of comparative pathological states and models for novel classes of pharmaceutical drugs that could be useful in the treatment of inflammatory disorders in which neutrophils participate.
Resumo:
Background: The oocyte ability to undergo successful fertilization, cleavage and embryonic development depends on meiotic maturation and developmental competence acquisition. In vitro maturation (IVM) protocols currently use eCG, hCG or a combination of both, the effect of these gonadotrophins during IVM and subsequent embryonic development is still controversial. Several media have been used for IVM of porcine oocytes: TCM199, Whitten's and NCSU23 have also been shown to support pig oocyte IVM. This study was designed to determine the effect of hormonal supplementation period and maturation media during in vitro maturation of pig oocytes (1) and subsequent embryonic development (2). Materials, Methods & Results: Oocytes with intact cumulus oophurus layers and homogeneous cytoplasm were collected from prebubertal gilts. IVM was subjected in NCSU23, TCM199 or Whitten's media supplemented with 10 IU/mL eCG and 10 IU/mL hCG for the first 24 or 48 h of IVM. In each replicate the oocytes were fixed every 4 h from 32 to 48 h IVM or the past 48 h after IVM, oocytes were fertilized in vitro in mTBM medium for six hours and cultured in NCSU23 medium for nine days. Cleavage, blastocyst and hatching rates were evaluated at 48 h (day 2), 168 h (day 7) and 216 h (day 9), respectively. The addition of eCG and hCG during the first 24 h IVM increased the proportion of oocytes that reached MII stage at 44 h of maturation in NCSU23 medium. This effect was also observed in Whitten medium at 44 and 48 h (P < 0.05). However, it was not observed in the TCM199 medium. No effect of maturation medium on oocyte nuclear maturation (P > 0.05) was observed in oocytes matured in the presence of eCG and hCG during the first 24 h IVM or during 48 h IVM. A progressive increase of maturation indexes was observed on oocytes matured with hormonal supplementation in Whitten media for 24 h. Higher indexes were obtained at 44 and 48 h. When NCSU23 media was used, no difference after 36 h of maturation was observed. The same result was observed in TCM199. A progressive increase of maturation indexes was observed on oocytes matured with hormonal supplementation for 48 h in Whitten media. Higher indexes were obtained in 36 and 40 h. When NCSU23 or TCM199 were used, no difference was observed. No effect of IVM media on the percentage of fertilized oocytes and polyspermic oocytes or number of spermatozoa per fertilized oocytes was observed. Also, no effect of IVM media on cleavage and blastocyst rates was seen. However, the proportion of hatched blastocysts was lower in NCSU23 compared to Whitten or TCM199. Discussion: Similar results were reported by Marques et al. [13], that it no differences between hormonal supplementation for 22 or 44 h were observed. Therefore, more studies are needed to elucidate the role of these hormones in nuclear in vitro maturation in pig oocytes. In conclusion, no effect of maturation media on meiotic progression was observed. However, the proportion of oocytes that reached metaphase II (MII) stage was higher when eCG + hCG were added for 24 h than 48 h mainly at the 44 h of maturation. In addition, no differences were observed in cleavage and blastocyst rates of the cultured embryos. However, embryos cultured in NCSU23 showed lower rates of hatching compared to other media. These results indicated no effect of maturation media on the fertilization and embryonic development even in the presence of cysteine, PFF and EGF, except for hatched embryos that these rates were lower in NCSU23.
Resumo:
Background: Recent studies have supported the concept of ""fetal programming"" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Methods: Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. Results: We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. Conclusions: In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.
Resumo:
Inheritance of resistance to Puccinia psidii G. Winter in a eucalyptus interspecific hybrid progeny evaluated under conditions of natural infection Rust caused by the fungus Puccinia psidii is currently the most important disease of eucalyptus. It is widely disseminated in Brazil, and causes serious damage in nurseries and plantation areas. The identification of resistant germplasm along with knowledge of the genetic basis of resistance heredity are the first requirements for the success of breeding programs aiming to develop resistant varieties. Earlier studies carried out under controlled conditions suggested a monogenic control as well as the participation of at least two genes promoting resistance to rust. The goal of this study was to evaluate the resistance to P. psidii under field conditions in fourteen progenies from controlled crosses and self-crosses among four hybrid clones of Eucalyptus grandis Hill ex Maiden x Eucalyptus urophylla ST Blake that contrast for resistance to the fungus. Results indicated that resistance could be explained by one locus with main effects and at least three different alleles. However, loci with minor effects may influence the resistance, since variation on severity classes was observed. Differences in segregation of resistance between reciprocal crosses were not observed, indicating absence of cytoplasmic effects.
Resumo:
P>The Arabidopsis thylakoid FtsH protease complex is composed of FtsH1/FtsH5 (type A) and FtsH2/FtsH8 (type B) subunits. Type A and type B subunits display a high degree of sequence identity throughout their mature domains, but no similarity in their amino-terminal targeting peptide regions. In chloroplast import assays, FtsH2 and FtsH5 were imported and subsequently integrated into thylakoids by a two-step processing mechanism that resulted in an amino-proximal lumenal domain, a single transmembrane anchor, and a carboxyl proximal stromal domain. FtsH2 integration into washed thylakoids was entirely dependent on the proton gradient, whereas FtsH5 integration was dependent on NTPs, suggesting their integration by Tat and Sec pathways, respectively. This finding was corroborated by in organello competition and by antibody inhibition experiments. A series of constructs were made in order to understand the molecular basis for different integration pathways. The amino proximal domains through the transmembrane anchors were sufficient for proper integration as demonstrated with carboxyl-truncated versions of FtsH2 and FtsH5. The mature FtsH2 protein was found to be incompatible with the Sec machinery as determined with targeting peptide-swapping experiments. Incompatibility does not appear to be determined by any specific element in the FtsH2 domain as no single domain was incompatible with Sec transport. This suggests an incompatible structure that requires the intact FtsH2. That the highly homologous type A and type B subunits of the same multimeric complex use different integration pathways is a striking example of the notion that membrane insertion pathways have evolved to accommodate structural features of their respective substrates.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
Brevipalpus-transmitted viruses (BTV) cause chlorotic, necrotic and/or ringspot lesions in leaves and stems of orchids, citrus, coffee and several other plant species. There are two different types of BTVs, the nuclear and the cytoplasmic, based on maturation locale in the cell and particle morphology. The orchid fleck virus (OFV) is a BTV that infects orchids. Its short rodlike particles are 32-40 nm in diameter, 100-150 nm in length. OFV is found in the nucleus and is associated with intranuclear electronlucent viroplasms. In 1999, transmission electron microscopy analysis revealed a distinct type of virus causing orchid fleck symptoms. The bacilliform particles, 70-80 nm in diameter and 110-120 nm in length, induced electron-dense viroplasm inclusions in infected cells and resembled the cytoplasmic type associated with BTV, such as the citrus leprosis virus C. Our objective in the present study was to verify whether the cytoplasmic type virus found in orchids could be amplified using primers for other cytoplasmic BTVs, such as CiLV-C and Solanum violaefolium ringspot virus (SvRSV). Additionally, we aimed to differentiate the two BTVs found in orchids: the nuclear and the cytoplasmic types of OFV using microscopy and molecular and serological tools. This virus was not amplified by the CiLV-C and SvRSV primers, and neither the molecular nor the serological tools available to the OFV diagnosis reacted with it, demonstrating that they are definitely different viruses.
Resumo:
During rat hepatocarcinogenesis preneoplastic lesions (PNL) emerge which may persist (pPNL) and be sites of progress to cancer or suffer remodeling (rPNL) tending to disappear. Cellular and molecular mechanisms involved in both phenotypes are not sufficiently elucidated. pPNL and rPNL cellular proliferation and apoptosis were evaluated in rats submitted to the resistant hepatocyte (RH) model, and an adjusted growth index (AGI) was established. p53, Bcl-2, and NF-kappa B p65 subunit expression was evaluated by immunohistochemistry in pPNL and rPNL. p65 expression and NF-kappa B activation was evaluated by Western blot assays in whole livers. A lower number of BrdU-stained hepatocyte nuclei/mm(2) and higher number of apoptotic bodies (AB) per mm(2) were observed in remodeling compared to pPNL. Cytoplasmic p53 accumulation is related to increased hepatocarcinoma malignancy. We observed that 71.3% pPNL and 25.4% rPNL (P < 0.05) presented p53 staining in the cytoplasm. Similarly, 67.7% pPNL and 23.1 % rPNL (P < 0.05) presented increased Bcl-2 staining. Thirty-two percent pPNL and 15.6% rPNL (P < 0.05) presented p65 staining. Compared to normal rats, increase (P < 0.05) of hepatic p65 expression and NF-kappa B activation in rats submitted to the RH model was observed. in agreement to previous studies hepatic pPNL and rPNL differ regarding cell proliferation and apoptosis. Moreover, persistence and remodeling involve differences in p53, Bcl-2, and NF-kappa B pathways. These data point to molecular pathways that may direct preneoplastic lesions to spontaneously regress or to progress to cancer.