734 resultados para CRASSOSTREA GIGAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queen conch (Strombus gigas) stocks in the Florida Keys once supported commercial and recreational fisheries, but overharvesting has decimated this once abundant snail. Despite a ban on harvesting this species since 1985, the local conch population has not recovered. In addition, previous work has reported that conch located in nearshore Keys waters are incapable of spawning because of poor gonadal condition, although reproduction does occur offshore. Queen conch in other areas undergo ontogenetic migrations from shallow, nearshore sites to offshore habitats, but conch in the Florida Keys are prevented from doing so by Hawk Channel. The present study was initiated to determine the potential of translocating nonspawning nearshore conch to offshore sites in order to augment the spawning stock. We translocated adult conch from two nearshore sites to two offshore sites. Histological examinations at the initiation of this study confirmed that nearshore conch were incapable of reproduction, whereas offshore conch had normal gonads and thus were able to reproduce. The gonads of nearshore females were in worse condition than those of nearshore males. However, the gonadal condition of the translocated nearshore conch improved, and these animals began spawning after three months offshore. This finding suggests that some component of the nearshore environment (e.g., pollutants, temperature extremes, poor food or habitat quality) disrupts reproduction in conch, but that removal of nearshore animals to suitable offshore habitat can restore reproductive viability. These results indicate that translocations are preferable to releasing hatchery-reared juveniles because they are more cost-effective, result in a more rapid increase in reproductive output, and maintain the genetic integrity of the wild stock. Therefore, translocating nearshore conch to offshore spawning aggregations may be the key to expediting the recovery of queen conch stocks in the Florida Keys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, mini-mum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay.