478 resultados para CONJECTURE
Resumo:
In this article, the multiloop amplitude prescription using the super-Poincare invariant pure spinor formalism for the superstring is reviewed. Unlike the RNS prescription, there is no sum over spin structures and surface terms coming from the boundary of moduli space can be ignored. Massless N-point multiloop amplitudes vanish for N < 4, which implies (with two mild assumptions) the perturbative finiteness of superstring theory. Also, R-4 terms receive no multiloop contributions in agreement with the Type IIB S-duality conjecture of Green and Gutperle. (c) 2005 Published by Elsevier SAS on behalf of Academie des sciences.
Resumo:
Massive particles of spin 0 and 1 violate the equivalence principle (EP) at the tree level. on the other hand, if these particles are massless, they agree with the EP, which leads us to conjecture that from a semiclassical viewpoint massless particles, no matter what their spin, obey the EP. General relativity predicts a deflection angle of 2.63' for a nonrelativistic spinless massive boson passing close to the Sun, while for a massive vectorial boson of spin 1 the corresponding deflection is 2.62'.
Resumo:
We examine a nearly extreme macroscopic Reissner-Nordstrom black hole in the context of semiclassical gravity. The absorption rate associated with the quantum tunneling process of scalar particles whereby this black hole can acquire enough angular momentum to violate the weak cosmic-censorship conjecture is shown to be nonzero.
Resumo:
Nowadays, many forms of reproduction coexist in nature: Asexual, Sexual, apomictic and meiotic parthenogenesis, hermaphroditism and parasex. The mechanisms of their evolution and what made them successful reproductive alternatives are very challenging and debated questions. Here, using a simple evolutionary aging model, we give I possible scenario. By studying the performance of Populations where individuals may have diverse characteristics-different ploidies, sex with or without crossing over, as well as the absence of sex-we find all evolution sequence that may explain why there are actually two major or leading groups: Sexual and asexual. We also investigate the dependence of these characteristics on different conditions of fertility and deleterious mutations. Finally, if the primeval organisms oil Earth were, in fact, asexual individuals we conjecture that the sexual form of reproduction could have more easily been set and found its niche during a period of low-intensity mutations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincare algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincare algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson-Sigma models based on a nonlinear deformation of the extended Poincare algebra.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The unlimited energy growth ( Fermi acceleration) of a classical particle moving in a billiard with a parameter-dependent boundary oscillating in time is numerically studied. The shape of the boundary is controlled by a parameter and the billiard can change from a focusing one to a billiard with dispersing pieces of the boundary. The complete and simplified versions of the model are considered in the investigation of the conjecture that Fermi acceleration will appear in the time-dependent case when the dynamics is chaotic for the static boundary. Although this conjecture holds for the simplified version, we have not found evidence of Fermi acceleration for the complete model with a breathing boundary. When the breathing symmetry is broken, Fermi acceleration appears in the complete model.
Resumo:
The extended linear complementarity problem (XLCP) has been introduced in a recent paper by Mangasarian and Pang. In the present research, minimization problems with simple bounds associated to this problem are defined. When the XLCP is solvable, their solutions are global minimizers of the associated problems. Sufficient conditions that guarantee that stationary points of the associated problems are solutions of the XLCP will be proved. These theoretical results support the conjecture that local methods for box constrained optimization applied to the associated problems could be efficient tools for solving the XLCP. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
Motivated by the recent solution of Karlin's conjecture, properties of functions in the Laguerre-Polya class are investigated. The main result of this paper establishes new moment inequalities fur a class of entire functions represented by Fourier transforms. The paper concludes with several conjectures and open problems involving the Laguerre-Polya class and the Riemann xi -function.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We confirm a conjecture of Mello and Coelho [Phys. Lett. A 373 (2009) 1116] concerning the existence of centers on local center manifolds at equilibria of the Lu system of differential equations on R(3). Our proof shows that the local center manifolds are algebraic ruled surfaces, and are unique. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study a field theory formulation of a fluid mechanical model. We implement the Hamiltonian formalism by using the BFFT conjecture in order to build a gauge invariant fluid field theory. We also generalize previous known classical dynamical field solutions for the fluid model. ©2000 The American Physical Society.
Resumo:
It has been conjectured that at the stationary point of the tachyon potential for the D-brane-anti-D-brane pair or for the non-BPS D-brane of superstring theories, the negative energy density cancels the brane tensions. We study this conjecture using a Wess-Zumino-Witten-like open superstring field theory free of contact term divergences and recently shown to give 60% of the vacuum energy by condensation of the tachyon field alone. While the action is non-polynomial, the multiscalar tachyon potential to any fixed level involves only a finite number of interactions. We compute this potential to level three, obtaining 85% of the expected vacuum energy, a result consistent with convergence that can also be viewed as a successful test of the string field theory. The resulting effective tachyon potential is bounded below and has two degenerate global minima. We calculate the energy density of the kink solution interpolating between these minima finding good agreement with the tension of the D-brane of one lower dimension. © 2000 Elsevier Science B.V.
Resumo:
The critical number of atoms for Bose-Einstein condensates with cylindrically symmetrical traps were calculated. The time evolution of the condensate was also studied at changing ground state. A conjecture on higher-order nonlinear effects was also discussed to determine its signal and strength. The results show that by exchanging frequencies, the geometry favors the condensation of larger number of particles.