927 resultados para COMPUTATIONAL DOCKING
Resumo:
This report presents the results from a survey of current practice in the use of design optimization conducted amongst UK companies. The survey was completed by the Design Optimization Group in the Department of Engineering at Cambridge University. The general aims of this research were to understand the current status of design optimization research and practice and to identify ways in which the use of design optimization methods and tools could be improved.
Resumo:
Protein misfolding is a general causation of classical conformational diseases and many pathogenic changes that are the result of structural conversion. Here I review recent progress in clinical and computational approaches for each stage of the misfolding process, aiming to present readers an outline for swift comprehension of this field.
Odour movement prediction using computational fluid dynamics (CFD)- Technical report for MARS UK Ltd
Resumo:
Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.