978 resultados para C. Infrared spectroscopy
Resumo:
Numerous investigations are dedicated to the research and development of new polymer materials destined for innovation in pharmaceutical forms. The application of these technological resources has allowed the commercialization of new therapeutic systems for modified drug release. This investigation aimed to evaluate the association of modified chondroitin sulfate with an insoluble polymer, Eudragit® RS 30 D, widely available in the pharmaceutical market. Isolated films were prepared by the evaporation process using a Teflon® plate. The aqueous dispersions (4% m/v) of synthetic polymer received the addition of modified chondroitin sulfate at different ratios. The interactions of the polymer chains in the blends were physicochemically characterized by means of Fourier transform infrared spectroscopy, thermal analyses, differential scanning calorimetry, thermogravimetry and scanning electron microscopy combined with hydration and assays in alkaline pH. The results showed appropriate properties of the coating materials for solid oral forms intended for drug deliver in specific environments.
Resumo:
The global energy scenario is currently a widely discussed topic, with growing concern about the future supplies. Thus, much attention has been dedicated to the utilization of biomass as an energy resource. In this respect, orange peel has become a material of great interest, especially to Brazil, which generates around 9.5 million tons of this waste per year. To this end, the authors studied the kinetics of the thermal processing of dried orange peel in inert and oxidizing atmosphere. The thermodynamic parameters were determined by the Ozawa-Flynn-Wall method for the global process observed during heating from the 25°C up to 800°C. The thermal analysis in air and nitrogen showed 3-2 stages of mass loss, respectively, with approximately 20% residual mass under a nitrogen atmosphere. The increase in the values of activation energy for the conversion points between 20% and 60% for thermal effects in air and nitrogen atmosphere was observed. The activation energy obtained in an oxidizing atmosphere was higher than that obtained under a nitrogen atmosphere. The fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the material has a high level of complexity with the presence of alkali and alkaline earth groups as well as phosphate, plus substances such as pectin, cellulose and lignin.
Resumo:
The aim of this paper was to use colorimetric assays for hydroxamic acid to quantify the biodiesel content in diesel and compare it with the traditional method (infrared spectroscopy, using the EN 14078 method). Samples were prepared from B2 to B10 with two kinds of diesel - S500 (red) and S50 (yellow) - to obtain two calibration curves. Through statistical methods it was shown that the slopes of the straight lines obtained for the different types of diesel were the same. Thus, the type of diesel did not influence the results of the colorimetric assay for hydroxamic acid. Real samples collected from gas stations were analyzed by both methods (colorimetry and EN 14078). By applying Student's t-test it was concluded that the methods could be considered statistically equivalent. Therefore, it was confirmed that the colorimetric assay for hydroxamic acid is suitable for detecting and quantifying the content of biodiesel in biodiesel/diesel blends and can also be easily adapted to field analyses.
Resumo:
AbstractIn this study, the spray drying technique was used to prepare L-ascorbic acid (AA) microparticles encapsulated with galactomannan-an extract from the seeds of the Delonix regia species. The physico-chemical characteristics, antioxidant activity, and encapsulation efficiency of the AA microparticles were evaluated and characterized using thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The free-radical scavenging activity of the AA microparticles was determined at different environmental conditions using DPPH (1,1-diphenyl-2-picryl-hydrazyl). X-ray diffraction measurements demonstrated a loss of crystallinity in AA after the encapsulation process, and a DSC scan also showed the loss of the compound's melting peak. Thermogravimetric analysis showed small differences in the thermal stability of galactomannan before and after the incorporation of AA. The mean diameters of the obtained spherical microspheres were in the range of 1.39 ± 0.77 µm. The encapsulation efficiency of AA microparticles in different environmental conditions varied from 95.40 to 97.92, and the antioxidant activity showed values ranging from 0.487 to 0.550 mg mL-1.
Resumo:
The obtention of silica and cyclodextrin hybrid materials was accomplished by refluxing them in xylol using citric acid as a binding agent. The materials were characterized by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and elemental analysis. Evidence for the docking of cyclodextrins α and γ was substantiated based on the variation in band intensity for groups such as ≡Si-OH. Additional docking evidence includes the displacement of some of the bands that are related to cyclodextrin such as the deformation of the C-H axial bond. The α and γ-CDSi materials were characterized as amorphous compounds. The products obtained in the synthesis showed changes in the decomposition temperatures of their isolated constituents, in which the mass of α and γ-CD docked to the silica surface gave the estimated values of 41% and 47%, respectively. The elemental constituents were shown to be consistent and close to their relative theoretical values. Thermogravimetric analysis showed that a reduction in the percentage of the hybrids was proportional to the amount of lost mass. This new material is an improvement over synthesized organosilane materials because the operator and the environment benefit from a less toxic methodology. In addition, the material has several potential applications in complexation systems with cyclodextrin.
Resumo:
Resorcinol-formaldehyde (RF) organic gels have been extensively used to produce carbon aerogels. The organic gel synthesis parameters greatly affect the structure of the resulting aerogel. In this study, the influence of the catalyst quantity on the polymeric solution sol-gel process was investigated. Sodium carbonate was used as a basic catalyst. RF gels were synthesized with a resorcinol to formaldehyde molar ratio of 0.5, a resorcinol to catalyst (R/C) molar ratio equal to 50 or 300, and a resorcinol to solvent ratio of 0.1 g mL-1. The sol-gel process was evaluated in situ by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor and measurements of the kinematic viscosity. The techniques showed the evolution of the sol-gel process, and the results showed that the lower catalyst quantity induced a higher gel point, with a lower viscosity at the gel point. Differential scanning calorimetry was used to investigate the thermal behavior of the RF dried gel, and results showed that the exothermic event related to the curing process was shifted to higher temperatures for solutions containing higher R/C ratios.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
Thermal methods of analysis are now used in a very large range of scientific investigations. In this work simultaneous thermogravimetry-differential thermal analysis (TG-DTA), X-Ray powder diffractometry and infrared spectroscopy were used to study the derivative compounds of purine, i. e. aminophylline, theophylline, caffeine and uric acid. The results led to informations about the thermal stability and thermal decomposition of these compounds.
Resumo:
Solid state M-L compounds, where M stands for bivalent Mn, Ni, Cu and L is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry - differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Solid-state M-3-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 3-MeO-Bz is 3-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, and chemical analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Solid-state M-2-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 2-MeO-Bz is 2-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), thermogravimetry, derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to have information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Solid-state M-4-MeO-Bz compounds, where M stands for trivalent La, Ce, Pr, Nd and Sm and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, polymorphic transformation, ligand's denticity, thermal behaviour and thermal decomposition of the isolated compounds.
Resumo:
The water soluble material, 3-n-propyl-1-azonia-4-azabicyclo[2.2.2]octanechloride silsesquioxane (dabcosil silsesquioxane) was obtained. The dabcosil silsesquioxane was grafted onto a silica surface, previously modified with aluminum oxide. The resulting solid, dabcosil-Al/SiO2, presents 0.15 mmol of dabco groups per gram of material. The product of the grafting reaction was analyzed by infrared spectroscopy and N2 adsorption-desorption isotherms. The dabcosil-Al/SiO2 material was used as sorbent for chromium (VI) adsorption in aqueous solution.
Resumo:
Solid-state Ln -3-MeO-Bz compounds, where Ln stands for lighter trivalent lanthanides (La Sm) and 3-methoxybenzoate, have been synthesized. Thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information concerning the composition, dehydration, polymorphic transformation, thermal behaviour and thermal decomposition of the synthesized compounds.
Resumo:
Solid State Ln-L compounds, where Ln stands for light trivalent lanthanides (La - Gd) and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, thermal behaviour and thermal decomposition of the isolated compounds.