949 resultados para C-terminal domain
Resumo:
The malaria parasite Plasmodium depends on the tight control of cysteine-protease activity throughout its life cycle. Recently, the characterization of a new class of potent inhibitors of cysteine proteases (ICPs) secreted by Plasmodium has been reported. Here, the recombinant production, purification and crystallization of the inhibitory C-terminal domain of ICP from P. berghei in complex with the P. falciparum haemoglobinase falcipain-2 is described. The 1:1 complex was crystallized in space group P4(3), with unit-cell parameters a = b = 71.15, c = 120.09 A. A complete diffraction data set was collected to a resolution of 2.6 A.
Resumo:
Canine distemper virus (CDV) causes in dogs a severe systemic infection, with a high frequency of demyelinating encephalitis. Among the six genes transcribed by CDV, the P gene encodes the polymerase cofactor protein (P) as well as two additional nonstructural proteins, C and V; of these V was shown to act as a virulence factor. We investigated the molecular mechanisms by which the P gene products of the neurovirulent CDV A75/17 strain disrupt type I interferon (IFN-alpha/beta)-induced signaling that results in the establishment of the antiviral state. Using recombinant knockout A75/17 viruses, the V protein was identified as the main antagonist of IFN-alpha/beta-mediated signaling. Importantly, immunofluorescence analysis illustrated that the inhibition of IFN-alpha/beta-mediated signaling correlated with impaired STAT1/STAT2 nuclear import, whereas the phosphorylation state of these proteins was not affected. Coimmunoprecipitation assays identified the N-terminal region of V (VNT) responsible for STAT1 targeting, which correlated with its ability to inhibit the activity of the IFN-alpha/beta-mediated antiviral state. Conversely, while the C-terminal domain of V (VCT) could not function autonomously, when fused to VNT it optimally interacted with STAT2 and subsequently efficiently suppressed the IFN-alpha/beta-mediated signaling pathway. The latter result was further supported by a single mutation at position 110 within the VNT domain of CDV V protein, resulting in a mutant that lost STAT1 binding while retaining a partial STAT2 association. Taken together, our results identified the CDV VNT and VCT as two essential modules that complement each other to interfere with the antiviral state induced by IFN-alpha/beta-mediated signaling. Hence, our experiments reveal a novel mechanism of IFN-alpha/beta evasion among the morbilliviruses.
Resumo:
Tenomodulin (Tnmd) is a member of a new family of type II transmembrane glycoproteins. It is predominantly expressed in tendons, ligaments, and eyes, whereas the only other family member, chondromodulin I (ChM-I), is highly expressed in cartilage and at lower levels in the eye and thymus. The C-terminal extracellular domains of both proteins were shown to modulate endothelial-cell proliferation and tube formation in vitro and in vivo. We analyzed Tnmd function in vivo and provide evidence that Tnmd is processed in vivo and that the proteolytically cleaved C-terminal domain can be found in tendon extracts. Loss of Tnmd expression in gene targeted mice abated tenocyte proliferation and led to a reduced tenocyte density. The deposited amounts of extracellular matrix proteins, including collagen types I, II, III, and VI and decorin, lumican, aggrecan, and matrilin-2, were not affected, but the calibers of collagen fibrils varied significantly and exhibited increased maximal diameters. Tnmd-deficient mice did not have changes in tendon vessel density, and mice lacking both Tnmd and ChM-I had normal retinal vascularization and neovascularization after oxygen-induced retinopathy. These results suggest that Tnmd is a regulator of tenocyte proliferation and is involved in collagen fibril maturation but do not confirm an in vivo involvement of Tnmd in angiogenesis.
Resumo:
Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1 alpha (CCL3), MIP-1 beta (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1 alpha and MIP-1 beta degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu(58) to Trp(59) bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1 beta hybrids indicated that processing of MIP-1 beta might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1 alpha, MIP-1 beta, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes.
Resumo:
Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite's nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.
Resumo:
Most newly synthesized messenger RNAs possess a 5’ cap and a 3’ poly(A) tail. The process of poly(A) tail shortening, also termed deadenylation, is important for post-transcriptional gene regulation, because deadenylation not only leads to mRNA translational inhibition but also is the first step of major mRNA degradation. Translationally inhibited mRNAs can be stored and/or degraded in dynamic cytoplasmic foci termed mRNA processing bodies, or P bodies, which are conserved in eukaryotes. To shed new light on the mechanisms of P body formation and P body functions, I focused on the link between deadenylation factors and P bodies. I found that the two major deadenylation complexes, Pan3-Pan2 and Ccr4-Caf1, can both be enriched in P bodies. The deadenylase activity of the Ccr4-Caf1 complex is prerequisite for P body formation. Pan3, but not the deadenylase Pan2, is essential for P body formation. While the C-terminal domain of Pan3 is important for interaction with Pan2, Pan3 N-terminal domain is important for Pan3 to form cytoplasmic foci colocalizing with P bodies and to promote mRNA decay. Interestingly, Pan3 N-terminal domain may be phosphorylated to regulate Pan3 localization and functions. Aside from the functions of the two deadenylation complexes in P bodies, I also studied all reported human P body proteins as a whole using bioinformatics. This effort not only has generated a comprehensive picture of the functions of and interactions among human P body proteins, but also has predicted proteins that may regulate P body formation and/or functions. In summary, my study has established a direct link between mRNA deadenylation and P body formation and has also led to new hypotheses to guide future research on how P body dynamics are controlled.
Resumo:
Type IV secretion (T4S) systems translocate DNA and protein effectors through the double membrane of Gram-negative bacteria. The paradigmatic T4S system in Agrobacterium tumefaciens is assembled from 11 VirB subunits and VirD4. Two subunits, VirB9 and VirB7, form an important stabilizing complex in the outer membrane. We describe here the NMR structure of a complex between the C-terminal domain of the VirB9 homolog TraO (TraO(CT)), bound to VirB7-like TraN from plasmid pKM101. TraO(CT) forms a beta-sandwich around which TraN winds. Structure-based mutations in VirB7 and VirB9 of A. tumefaciens show that the heterodimer interface is conserved. Opposite this interface, the TraO structure shows a protruding three-stranded beta-appendage, and here, we supply evidence that the corresponding region of VirB9 of A. tumefaciens inserts in the membrane and protrudes extracellularly. This complex structure elucidates the molecular basis for the interaction between two essential components of a T4S system.
Resumo:
Uridine-rich small nuclear (U snRNAs), with the exception of the U6 snRNA, are RNA polymerase II (RNAPII) transcripts. The mechanism of 3’ cleavage of snRNAs has been unknown until recently. This area was greatly advanced when 12 of the Integrator complex subunits (IntS) were purified in 2005 through their interaction with the C-terminal domain (CTD) of the large subunit (RpbI) of RNAPII. Subsequently, our lab performed a genome-wide RNAi screen that identified two more members of the complex that we have termed IntS13 and IntS14. We have determined that IntS9 and 11 mediate the 3’ cleavage of snRNAs, but the exact function of the other subunits remains unknown. However, through the use of a U7 snRNA-GFP reporter and RNAi knockdown of the Integrator subunits in Drosophila S2 cells, we have shown that all subunits are required for the proper processing of snRNAs, albeit to differing degrees. Because snRNA transcription takes place in the nucleus of the cell, it is expected that all of the Integrator subunits would exhibit nuclear localization, but the knowledge of discrete subnuclear localization (i.e. to Cajal bodies) of any of the subunits could provide important clues to the function of that subunit. In this study, we used a cell biological approach to determine the localization of the 14 Integrator subunits. We hypothesized that the majority of the subunits would be nuclear, however, a few would display distinct localization to the Cajal bodies, as this is where snRNA genes are localized and transcribed. The specific aims and results are: 1. To determine the subcellular localization of the 14 Integrator subunits. To accomplish this, mCherry and GFP tagged clones were generated for each of the 14 Drosophila and human Integrator subunits. Confocal microscopy studies revealed that the majority of the subunits were diffuse in the nucleus, however, IntS3 formed discrete subnuclear foci. Surprisingly, two of the subunits, IntS2 and 7 were observed in cytoplasmic foci. 2. To further characterize Integrator subunits with unique subcellular localizations. Colocalization studies with endogenous IntS3 and Cajal body marker, coilin, showed that these two proteins overlap, and from this we concluded that IntS3 localized to Cajal bodies. Additionally, colocalization studies with mCherry-tagged IntS2 and 7 and the P body marker, Dcp1, revealed that these proteins colocalize as well. IntS7, however, is more stable in cytoplasmic foci than Dcp1. It was also shown through RNAi knockdown of Integrator subunits, that the cytoplasmic localization of IntS2 and 7 is dependent on the expression of IntS1 and 11 in S2 cells.
Resumo:
Nonsense-mediated mRNA decay (NMD), which is best known for degrading mRNAs with premature termination codons (PTCs), is thought to be triggered by aberrant translation termination at stop codons located in an environment of the mRNP that is devoid of signals necessary for proper termination. In mammals, the cytoplasmic poly(A)-binding protein 1 (PABPC1) has been reported to promote correct termination and therewith antagonize NMD by interacting with the eukaryotic release factors 1 (eRF1) and 3 (eRF3). Using tethering assays in which proteins of interest are recruited as MS2 fusions to a NMD reporter transcript, we show that the three N-terminal RNA recognition motifs (RRMs) of PABPC1 are sufficient to antagonize NMD, while the eRF3-interacting C-terminal domain is dispensable. The RRM1-3 portion of PABPC1 interacts with eukaryotic initiation factor 4G (eIF4G) and tethering of eIF4G to the NMD reporter also suppresses NMD. We identified the interactions of the eIF4G N-terminus with PABPC1 and the eIF4G core domain with eIF3 as two genetically separable features that independently enable tethered eIF4G to inhibit NMD. Collectively, our results reveal a function of PABPC1, eIF4G and eIF3 in translation termination and NMD suppression, and they provide additional evidence for a tight coupling between translation termination and initiation.
Resumo:
Nonsense-mediated mRNA decay (NMD) is best known for its role in quality control of mRNAs, where it recognizes premature translation termination codons (PTCs) and rapidly degrades the corresponding mRNA. The basic mechanism of NMD appears to be conserved among eukaryotes: aberrant translation termination triggers NMD. According to the current working model, correct termination requires the interaction of the ribosome with the poly(A)-binding protein (PABPC1) mediated through the eukaryotic release factors 1 (eRF1) and 3 (eRF3). The model predicts that in the absence of this interaction, the NMD core factor UPF1 binds to eRF3 instead and initiates the events ultimately leading to mRNA degradation. However, the exact mechanism of how the decision between proper and aberrant (i.e. NMD-inducing) translation termination occurs is not yet well understood. We address this question using a tethering approach in which proteins of interest are bound to a reporter transcript into the vicinity of a PTC. Subsequently, the ability of the tethered proteins to inhibit NMD and thus stabilize the reporter transcript is assessed. Our results revealed that the C-terminal domain interacting with eRF3 seems not to be necessary for tethered PABPC1 to suppress NMD. In contrast, the N-terminal part of PABPC1, consisting of 4 RNA recognition motifs (RRMs) and interacting with eukaryotic initiation factor 4G (eIF4G), retains the ability to inhibit NMD. We find that eIF4G is able to inhibit NMD in a similar manner as PABPC1 when tethered to the reporter mRNA. This stabilization by eIF4G depends on two key interactions. One of these interactions is to PABPC1, the other is to eukaryotic initiation factor 3 (eIF3). These results confirm the importance of PABPC1 in inhibiting NMD but additionally reveal a role of translation initiation factors in the distinction between bona fide termination codons and PTCs.
Resumo:
Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract.
Resumo:
We present the crystal structures of the SEC14-like domain of supernatant protein factor (SPF) in complex with squalene and 2,3-oxidosqualene. The structures were resolved at 1.75 Å (complex with squalene) and 1.6 Å resolution (complex with 2,3-oxidosqualene), leading in both cases to clear images of the protein/ substrate interactions. Ligand binding is facilitated by removal of the Golgi-dynamics (GOLD) C-terminal domain of SPF, which, as shown in previous structures of the apo-protein, blocked the opening of the binding pocket to the exterior. Both substrates bind into a large hydrophobic cavity, typical of such lipid-transporter family. Our structures report no specific recognition mode for the epoxide group. In fact, for both molecules, ligand affinity is dominated by hydrophobic interactions, and independent investigations by computational models or differential scanning micro-calorimetry reveal similar binding affinities for both ligands. Our findings elucidate the molecular bases of the role of SPF in sterol endo-synthesis, supporting the original hypothesis that SPF is a facilitator of substrate flow within the sterol synthetic pathway. Moreover, our results suggest that the GOLD domain acts as a regulator, as its conformational displacement must occur to favor ligand binding and release during the different synthetic steps.
Resumo:
In the current model for bacterial cell division, the FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other essential division proteins such as FtsA and ZipA. The putative protein complex ultimately generates the division septum. The essential cell division protein FtsZ is a functional and structural homolog of eukaryotic tubulin, and like tubulin, FtsZ hydrolyzes GTP and self-assembles into protein filaments in a strictly GTP-dependent manner. FtsA shares sequence similarity with members of the ATPase superfamily that include actin, but its actual function remains unknown. To test the division model and elucidate functions of the division proteins, this dissertation primarily focuses on the analysis of FtsZ and FtsA in Escherichia coli. ^ By tagging with green fluorescent protein, we first demonstrated that FtsA also exhibits a ring-like structure at the potential division site. The localization of FtsA was dependent on functional FtsZ, suggesting that FtsA is recruited to the septum by the FtsZ ring. In support of this idea, we showed that FtsA and FtsZ directly interact. Using a novel E. coli in situ assay, we found that the FtsA-FtsZ interaction appears to be species-specific, although an interspecies interaction could occur between FtsA and FtsZ proteins from two closely related organisms. In addition, mutagenesis of FtsA revealed that no single domain is solely responsible for its septal localization or interaction with FtsZ. To explore the function of FtsA, we purified FtsA protein and demonstrated that it has ATPase activity. Furthermore, purified FtsA stimulates disassembly of FtsZ polymers in a sedimentation assay but does not affect GTP hydrolysis of FtsZ. This result suggests that in the cell, FtsA may function similarly in regulating dynamic instability of the FtsZ ring during the cell division process. ^ To elucidate the structure-function relationship of FtsZ, we carried out thorough genetic and functional analyses of the mutagenized FtsZ derivatives. Our results indicate that the conserved N-terminal domain of FtsZ is necessary and sufficient for FtsZ self-assembly and localization. Moreover, we discovered a critical role for an extreme C-terminal domain of FtsZ that consists of only 12 residues. Truncated FtsZ derivatives lacking this domain, though able to polymerize and localize, are defective in ring formation in vivo as well as interaction with FtsA and ZipA. Alanine scanning mutagenesis of this region pinpointed at least five residues necessary for the function of FtsZ. Studies of protein levels and protein-protein interactions suggested that these residues may be involved in regulating protein stability and/or FtsZ-FtsA interactions. Interestingly, two of the point mutants exhibited dominant-negative phenotypes. ^ In summary, results from this thesis work have provided additional support for the division machinery model and will contribute to a better understanding of the coordinate functions of FtsA and FtsZ in the cell division process. ^
Resumo:
To better understand the mechanisms of how the human prostacyclin receptor (1P) mediates vasodilation and platelet anti-aggregation through Gs protein coupling, a strategy integrating multiple approaches including high resolution NMR experiments, synthetic peptide, fluorescence spectroscopy, molecular modeling, and recombinant protein was developed and used to characterize the structure/function relationship of important segments and residues of the IP receptor and the α-subunit of the Gs protein (Gαs). The first (iLP1) and third (iLP3) intracellular loops of the IP receptor, as well as the Gαs C-terminal domain, relevant to the Gs-mediated IP receptor signaling, were first identified by observation of the effects of the mini gene-expressed corresponding protein segments in HEK293 cells which co-expressed the receptor and Gαs. Evidence of the IP iLP1 domain interacted with the Gαs C-terminal domain was observed by fluorescence and NMR spectroscopic studies using a constrained synthetic peptide, which mimicked the IP iLP1 domain, and the synthetic peptide, which mimicked Gαs C-terminal domain. The solution structural models and the peptide-peptide interaction of the two synthetic protein segments were determined by high resolution NMR spectroscopy. The important residues in the corresponding domains of the IP receptor and the Gαs predicted by NMR chemical shift mapping were used to guide the identification of their protein-protein interaction in cells. A profile of the residues Arg42 - Ala48 of the IP iLP1 domain and the three residues Glu392 ∼ Leu394 of the Gαs C-terminal domain involved in the IP/Gs protein coupling were confirmed by recombinant proteins. The data revealed an intriguing speculation on the mechanisms of how the signal of the ligand-activated IP receptor is transmitted to the Gs protein in regulating vascular functions and homeostasis, and also provided substantial insights into other prostanoid receptor signaling. ^
Resumo:
Nucleoside analogs are a class of chemotherapeutic agents with tremendous utility in treating viral infections and cancers. Traditional nucleoside analogs are DNA-directed. However, there is a new group of nucleoside analogs that induce cell death by a direct effect on RNA synthesis. The adenosine analog, 8-chloroadenosine, is incorporated into RNA and is currently in clinical trials. Another congener, 8-amino-adenosine has demonstrated toxicity in multiple myeloma cell lines. Like other nucleoside analogs, 8-amino-adenosine must be metabolized to its triphosphate to elicit a cytotoxic effect. Furthermore, 8-amino-adenosine causes a decline of the intracellular ATP pool and inhibits mRNA poly(A) adenylation. ^ Because of the previously known adenosine analog mechanism as well as the scope of the RNA directed nucleoside analog field, I hypothesized there are multiple mechanisms of transcription inhibition mediating 8-amino-adenosine-induced cell death. Prior to investigating these mechanisms, cell death by 8-amino-adenosine was characterized. 8-Amino-adenosine activates PARP cleavage and induces the caspase cascade. 8-Amino-adenosine increases Annexin V binding and the mitochondrial membrane permeability in wild-type MEF cells. In BAX/BAK deficient MEF cells, 8-amino-adenosine decreases the mitochondrial membrane permeability and induces autophagy. ^ Once cell death was characterized, the mechanisms of 8-amino-adenosine transcription inhibition were assessed. It was established that 8-aminoadenosine treatment causes 8-amino-ATP accumulation and decreases the intracellular ATP concentration, resulting in RNA synthesis inhibition. Several other mechanisms are identified. First, a relationship between ATP decline by 8-amino-adenosine or other known ATP synthesis inhibitors and RNA synthesis is established indicating that effects on cellular bioenergy, regardless of the mechanism of ATP decline, can decrease RNA synthesis. Second, 8-aminoadenosine treatment decreases the phosphorylation of serine residues on the RNA polymerase II C-terminal domain which regulates transcription initiation and elongation. Third, evidence is provided to demonstrate 8-amino-ATP is a substrate for RNA synthesis. Fourth, 8-amino-ATP is incorporated at the 3'-terminal position leading to chain termination. Finally, in vitro transcription assays show that 8-amino-ATP may compete with ATP to decrease de novo mRNA synthesis. Overall, this work demonstrates 8-amino-adenosine is a cytotoxic nucleoside analog that functions to inhibit RNA transcription through multiple mechanisms. ^