997 resultados para Breeding for seed yield


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6) for the tainted lowland rice environments. The main reason for the poor adoption of new cultivars by farmers is the susceptibility to diseases and unacceptable grain qualities. The conventional breeding program also takes at least 15 years from initial crossing to the release of new cultivars. A new breeding strategy can be established to shorten the period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), and early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer genes and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown plant hopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weather damage reduces the value of commercial mungbean, but hard-seededness can reduce the level of damage. However, attempts to breed large- and hard-seeded mungbean varieties have been unsuccessful. To understand the relationship between seed weight and hard-seededness, these traits were investigated using a quantitative trait loci (QTL) mapping approach with a recombinant inbred population derived from a cross between a completely soft-seeded variety and a completely hard-seeded genotype. The two parental genotypes also had a sixfold difference in seed weight. QTL analyses revealed four loci for hard-seededness and I I loci for seed weight. Two of the hardseededness loci co-localized with seed weight QTL. When seed weight was used as a covariate in the analysis of hard-seededness from the field data, two of the four hard-seeded QTL remained significant with the effect at one of these remaining unchanged. These results explain why retaining hard-seededness in large seeded mungbean lines has been unsuccessful. The existence of a persistent locus, however, indicated that breeding large and persistently hard-seeded varieties of mungbean may be possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A supersweet sweet corn hybrid, Pacific H5, was grown under field conditions in South-East Queensland to study the effects of harvest time and drying conditions on seed quality. Cobs were harvested at different times to obtain seed with two moisture percentage ranges (20-30% and 40-50%) and dried to 12% moisture under different combinations of drying temperatures (30 degrees C, 40 degrees C and 50 degrees C) and air velocities (1.25 m/s, 2.75 m/s and 4.30 m/s). Dried seed was stored at 30 degrees C with bimonthly monitoring of seed quality for 12 months. For standard as well as cold test germinations, statistical analysis yielded significant main effects for temperature, air velocity and harvest moisture content and significant interactions for drying temperature by harvest moisture and drying temperature by air velocity. Germination at the beginning of storage was unaffected by drying temperatures up to 40 degrees C regardless of harvest moisture but was lower at 50 degrees C for higher moisture. However, germination at the end of the storage period of 12 months was greatest for seed harvested at higher moisture and dried at temperatures up to 40 degrees C. Germination was not affected by air velocity for drying temperatures up to 40 degrees C but at 50 degrees C it generally decreased with increase in air velocity. To slow down seed deterioration during storage, it is recommended that sweet corn seed should be harvested at a higher moisture range (40-50%) and dried at 40 degrees C and 4.30 m/s air velocity. The drying temperature can be raised to 50 degrees C for seed harvested at a low moisture range (20-30%) provided the air velocity is kept low (1.25 m/s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of interspecific heterosis in crosses between Medicago sativa subsp. sativa and M. sativa subsp. falcata was assessed. Three sativa and 3 falcata plants were crossed in a diallel design. Progeny dry matter yield and natural plant height were assessed in a replicated field experiment at Gatton, Queensland. Yield data were analysed using the method of residual maximum likelihood (REML) and Griffing's model 1. There were significant differences between the reciprocal, general combining ability (GCA), and specific combining ability (SCA) effects. As expected, S-1 populations were lower yielding than their respective intraspecific cross and falcata x falcata crosses were significantly lower yielding than sativa x sativa crosses. Some of the interspecific crosses indicated substantial SCA effects, yielding at least as well as the best sativa x sativa crosses. We have demonstrated the potential usefulness of unselected M. sativa subsp. falcata as a heterotic group in the improvement of yield in northern Australian adapted lucerne material, and discuss how it could be incorporated into future breeding to overcome the yield stagnation currently being experienced in Australian programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guayule (Parthenium argentatum Gray) is a rubber-producing shrub native to the semi-arid region of north central Mexico and southwestern Texas. Timely harvest is critical to achieve maximum seed viability, vigour, and yield. The objective of this study was to investigate possible indicators of optimum seed maturity in guayule. The optimum harvest maturity time for guayule was studied by comparing quality parameters at different times after flowering. Heat units expressed as growing degree-days after flowering were calculated and related to seed development stages and quality. Seed quality at different stages of development was assessed by germination, capitulum dry mass, 1000 seed mass, and percentage of filled seeds. The maximum seed quality was recorded at 329 growing degree-days (GDD). This was 28 days from time of flowering. At this date, the moisture content of the capitulum was 48% on a wet basis and the colour was comparable to cinnamon (Code 165C) on the Royal Horticultural Society (R.H.S.) standard colour chart. Of all the parameters GDD, 1000 seed mass, and percentage of filled seeds provided a more rapid and reliable measure of optimum seed maturity. Colour identification can be used as an additional indicator. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the relationships among testing environments is essential for better targeting cultivars to production environments. To identify patterns of cultivar, environment, cultivar-by-environment interactions, and opportunities for indirect selection for grain yield, a set of 25 spring wheat cultivars from China and the International Maize and Wheat Improvement Center (CIMMYT) was evaluated in nine environments in China and four management environments at CIMMYT in Cd. Obregon, Mexico, during two wheat seasons. Genetic background and original environment were the main factors influencing grain yield performance of the cultivars. Baviacora M 92, Xinchun 2 and Xinchun 6 showed relatively more stable and higher grain yields, whereas highly photoperiod sensitive cultivars Xinkehan 9, Kefeng 6 and Longmai 19 proved consistently inferior across environments, except in Harbin and Keshan, the two high latitude environments. Longmai 26, also from high latitude environments in the northeastern Heilongjiang province, was however probably not as photoperiodicly sensitive as other cultivars; from that region, and produced much higher grain yield and expressed a broader adaptation. None of the environments reported major diseases. Pattern analyses revealed that photoperiod response and planting option on beds were the two main factors underlying the observed interactions for grain yield. The production environment of planting on the flat in Mexico grouped together with Huhhot and Urumqi in both wheat seasons, indicating an indirect response to selection for grain yield in this CIMMYT managed environment could benefit the two Chinese environments. Both the environment of planting on the flat with Chinese Hejin and Yongning, and the three CIMMYT enviromnents planting on raised beds with Chinese Yongning grouped together only in one season, showing that repeatability may not be stable in this case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seven years of multi-environment yield trials of navy bean (Phaseolus vulgaris L.) grown in Queensland were examined. As is common with plant breeding evaluation trials, test entries and locations varied between years. Grain yield data were analysed for each year using cluster and ordination analyses (pattern analyses). These methods facilitate descriptions of genotype performance across environments and the discrimination among genotypes provided by the environments. The observed trends for genotypic yield performance across environments were partly consistent with agronomic and disease reactions at specific environments and also partly explainable by breeding and selection history. In some cases, similarities in discrimination among environments were related to geographic proximity, in others management practices, and in others similarities occurred between geographically widely separated environments which differed in management practices. One location was identified as having atypical line discrimination. The analysis indicated that the number of test locations was below requirements for adequate representation of line x environment interaction. The pattern analyses methods used were an effective aid in describing the patterns in data for each year and illustrated the variations in adaptive patterns from year to year. The study has implications for assessing the number and location of test sites for plant breeding multi-environment trials, and for the understanding of genetic traits contributing to line x environment interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large portion of the world’s poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Asia, about 50% of all the rice land is rainfed and, although rice yields in irrigated systems have doubled and tripled over the past 30 years, only modest gains have occurred in rainfed rice systems. In part, this is because of the difficulty in improving rice varieties for environments that are heterogeneous and variable, and in part because there has been little effort to breed rice for drought tolerance. Information available for other cereals (for example, maize, Bänziger et al 2000) and for wheat and the limited or circumstantial evidence available for rice indicate that we can now breed varieties that have improved yield under drought and produce high yields in the good seasons. This manual aims to help plant breeders develop such varieties. While the manual focuses on drought tolerance, this must be integrated with the mainstream breeding program that also deals with agronomic adaptation, grain quality, and pest and disease resistance. Mackill et al (1996) have written a guide to the overall improvement of rice for rainfed conditions. This manual should be seen as an amplification of and updating of the section on drought tolerance in that book. Because final proof of many approaches for breeding drought-tolerant rice is not yet available, and because some aspects may not work in all environments and germplasm, we recommend that you use this manual with caution. Test the suggested approaches and only implement them on a large scale if they are effective and realistic for your own situation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnitude and nature of genotype-by-environment interactions (G×E) for grain yield (GY) and days to flower (DTF) in Cambodia were examined using a random population of 34 genotypes taken from the Cambodian rice improvement program. These genotypes were evaluated in multi-environment trials (MET) conducted across three years (2000 to 2002) and eight locations in the rainfed lowlands. The G×E interaction was partitioned into components attributed to genotype-by-location (G×L), genotype-by-year (G×Y) and genotype-by-location-by-year (G×L×Y) interactions. The G×L×Y interaction was the largest component of variance for GY. The G×L interaction was also significant and comparable in size to the genotypic component (G). The G×Y interaction was small and non significant. A major factor contributing to the large G×L×Y interactions for GY was the genotypic variation for DTF in combination with environmental variation for the timing and intensity of drought. Some of the interactions for GY associated with timing of plant development and exposure to drought were repeatable across the environments enabling the identification of three-target populations of environments (TPE) for consideration in the breeding program. Four genotypes were selected for wide adaptation in the rainfed lowlands in Cambodia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6). Main reason is a poor adoption of new cultivars by farmers due to poor adaptation of new cultivars to the rainfed environments, susceptibility to diseases and insect pests and unacceptable grain qualities. The conventional breeding program also takes at least 15 years for releasing new cultivars. New breeding strategy can be established to shorten period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer gene and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown planthopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.