995 resultados para Brain Growth
Resumo:
The objective of the present study was to evaluate herbage accumulation, morphological composition, growth rate and structural characteristics in Mombasa grass swards subject to different cutting intervals (3, 5 and 7 wk) during the rainy and dry seasons of the year. Treatments were assigned to experimental units (17.5 m(2)) according to a complete randomised block design, with four replicates. Herbage accumulation was greater in the rainy than in the dry season (83 and 17%, respectively). Herbage accumulation (24,300 kg DM ha(-1)), average growth rate (140 kg DM ha(-1) d(-1)) and sward height (111 cm) were highest in the 7 wk cutting interval, but leaf proportion (56%), leaf:stem (1.6) and leaf:non leaf (1.3) ratios decreased. Herbage accumulation, morphological composition and sward structure of Mombasa grass sward may be manipulated through defoliation frequency. The highest leaf proportion was recorded in the 3-wk cutting interval. Longer cutting intervals affected negatively sward structure, with potential negative effects on utilization efficiency, animal intake and performance.
Resumo:
Objective: To evaluate the effects of local administration of epidermal growth factor (EGF) located within liposomes on recruitment of osteoclasts during mechanical force in rats. Materials and Methods: An orthodontic elastic band was inserted between the left upper first and second molars, to move mesially the first molar. Rats were randomly divided into 4 groups (n = 8): EGF (2 ng/mu L) located within liposomes (group 1), liposomes only (group 2), soluble EGF (2 ng/mu L; group 3), or vehicle alone (group 4). The solutions were injected into the region of the root furcation of the left first molar after elastic band insertion. Tooth movement was measured using a plaster model of the maxilla, and the number of osteoclasts recruited at the pressure side of the first molar was histologically evaluated. Results: Intergroup analysis showed that there was no significant difference between group 2 and group 4 (P >.05) and between group 1 and group 3 (P >.05). However, group 1 and group 3 exhibited greater differences in tooth movement than group 2 and group 4 (P <.05). On the other hand, group 1 showed greater tooth movement than groups 2 and 4 with statistical significance (P <.01). The increase in the number of osteoclasts in group 1 was significantly higher than in the other groups (P <.05). Conclusion: Exogenous EGF-liposome administration has an additive effect when compared with soluble EGF on the rate of osteoclast recruitment, producing faster bone resorption and tooth movement.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.
Resumo:
Introduction: The successful integration of stem cells in adult brain has become a central issue in modern neuroscience. In this study we sought to test the hypothesis that survival and neurodifferentiation of mesenchymal stem cells (MSCs) may be dependent upon microenvironmental conditions according to the site of implant in the brain. Methods: MSCs were isolated from adult rats and labeled with enhanced-green fluorescent protein (eGFP) lentivirus. A cell suspension was implanted stereotactically into the brain of 50 young rats, into one neurogenic area (hippocampus), and into another nonneurogenic area (striatum). Animals were sacrificed 6 or 12 weeks after surgery, and brains were stained for mature neuronal markers. Cells coexpressing NeuN (neuronal specific nuclear protein) and GFP (green fluorescent protein) were counted stereologically at both targets. Results: The isolated cell population was able to generate neurons positive for microtubule-associated protein 2 (MAP2), neuronal-specific nuclear protein (NeuN), and neurofilament 200 (NF200) in vitro. Electrophysiology confirmed expression of voltage-gated ionic channels. Once implanted into the hippocampus, cells survived for up to 12 weeks, migrated away from the graft, and gave rise to mature neurons able to synthesize neurotransmitters. By contrast, massive cell degeneration was seen in the striatum, with no significant migration. Induction of neuronal differentiation with increased cyclic adenosine monophosphate in the culture medium before implantation favored differentiation in vivo. Conclusions: Our data demonstrated that survival and differentiation of MSCs is strongly dependent upon a permissive microenvironment. Identification of the pro-neurogenic factors present in the hippocampus could subsequently allow for the integration of stem cells into nonpermissive areas of the central nervous system.
Resumo:
Background: The vascular endothelial growth factor (VEGF) is a major promoter of endothelial growth and migration. Some studies have shown a correlation between expression of this growth factor and prognosis in several cancers, including well-differentiated thyroid cancer. Aim: We studied VEGF expression, local invasiveness, and other prognostic factors in papillary thyroid carcinoma (PTC) to test the hypothesis that the expression of VEGF is correlated with the degree of invasion of PTC. Patients and Methods: Clinical and pathological data of 76 patients with PTC were retrospectively reviewed. Group 1 consisted of patients with gross locally invasive tumors, group 2 consisted of patients with only invasion of the thyroid capsule, and group 3 consisted of patients with noninvasive PTC. Results: VEGF expression was noted within the tumor in all groups of PTC patients but was absent in the surrounding normal tissue. Older patients had higher expression of VEGF than younger patients. The age of patients with strong reaction to VEGF was 46 +/- 14 (mean +/- standard deviation), and that in patients with a weaker reaction was 39 +/- 16 (p<0.05). Only 20% of patients with a follicular variant of PTC had a strong reaction to VEGF compared with 68% of patients with classical PTC (p<0.01). Conclusions: VEGF expression appears to be an early event in the development of PTC. Whether VEGF expression promotes the progression of PTC is not known, but the answer to this question may be important in view of its greater expression in older patients, a group whose prognosis in PTC is worse.
Resumo:
It has been demonstrated that human adipose tissue-derived mesenchymal stem cells (hASCs) enhance vascular density in ischemic tissues, suggesting that they can differentiate into vascular cells or release angiogenic factors that may stimulate neoangiogenesis. Moreover, there is evidence that shear stress (SS) may activate proliferation and differentiation of embryonic and endothelial precursor stem cells into endothelial cells (ECs). In this work, we investigated the effect of laminar SS in promoting differentiation of hASCs into ECs. SS (10 dyn/cm(2) up to 96 h), produced by a cone plate system, failed to induce EC markers (CD31, vWF, Flk-1) on hASC assayed by RT-PCR and flow cytometry. In contrast, there was a cumulative production of nitric oxide (determined by Griess Reaction) and vascular endothelial growth factor (VEGF; by ELISA) up to 96 h of SS stimulation ( NO(2)(-) in nmol/10(4) cells: static: 0.20 +/- 0.03; SS: 1.78 +/- 0.38, n = 6; VEGF in pg/10(4) cells: static: 191.31 +/- v35.29; SS: 372.80 +/- 46.74, n = 6, P < 0.05). Interestingly, the VEGF production was abrogated by 5 mM N(G)-L-nitro-arginine methyl ester (L-NAME) treatment (VEGF in pg/10(4) cells: SS: 378.80 +/- 46.74, n = 6; SS + L-NAME: 205.84 +/- 91.66, n = 4, P < 0.05). The results indicate that even though SS failed to induce EC surface markers in hASC under the tested conditions, it stimulated NO-dependent VEGF production.
Resumo:
Background: Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results: TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions: Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.
Resumo:
Background: Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of alpha v beta 3-integrin and low levels of RHOC. Methods: Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. Results: We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. Conclusion: This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study databases allowed us to point to a great potential of involvement in tumor progression for several of the genes identified here. A few sequences obtained here may also contribute to extend annotated mRNAs or to the identification of novel transcripts.
Resumo:
Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectornized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of DA antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and DA actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of DA through D-2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of DA through D, receptors and in other part by inhibition of stimulatory action of DA through D2 receptors.
Resumo:
Background: Glioblastoma is the most lethal primary malignant brain tumor. Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor. Histone deacetylases (HDACs) are recognized as promising targets for cancer treatment. In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment. However, no study has demonstrated the status of global HDAC expression in gliomas and its possible correlation to the use of HDACis. The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas. Methods: Forty-three microdissected patient tumor samples were evaluated. The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas). Eleven normal cerebral tissue samples were also analyzed (54 total samples analyzed). mRNA expression of class I, II, and IV HDACs was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene beta-glucuronidase. Protein levels were evaluated by western blotting. Results: We found that mRNA levels of class II and IV HDACs were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, p < 0.05). The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue. Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue. Conclusion: Our study establishes a negative correlation between HDAC gene expression and the glioma grade suggesting that class II and IV HDACs might play an important role in glioma malignancy. Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of HDAC mRNA in glioblastomas.
Resumo:
Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.
Resumo:
Expansion of adipose tissue in obesity is associated with angiogenesis and adipose tissue mass depends on neovascularization. Vascular endothelial growth factor (VEGF) is the main angiogenic factor in the adipose tissue, and VEGF expression is tightly regulated at both transcriptional and translational levels. However, no previous study has tested the hypothesis that genetic polymorphisms in the VEGF gene could affect susceptibility to obesity. To test this hypothesis, we compared the distribution of genotypes and haplotypes including three VEGF genetic polymorphisms in obese children and adolescents with those found in healthy controls. We studied 172 healthy children and adolescents and 113 obese children and adolescents. Genotypes of three clinically relevant VEGF polymorphisms in the promoter region (C-2578A, G-1154A, and G-634C) of the VEGF gene were determined by TaqMan allele discrimination assay and real-time polymerase chain reaction. VEGF haplotypes were inferred using Haplo. stats and PHASE 2.1 programs. We found no differences in the distributions of VEGF genotypes and alleles (p > 0.05). However, the CAG haplotype was more frequent in the obese group than in the control group (4% versus 0%, respectively, in white subjects; p = 0.008; odds ratio 10.148 (95% confidence interval: 1.098-93.788). Our findings suggest that VEGF haplotypes affect susceptibility to obesity in children and adolescents.
Resumo:
Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein produced mostly in endothelial cells and its transcription is regulated by a variety of growth factors and cytokines. VEGF plays many relevant roles, and three functional polymorphisms in the promoter region of the VEGF gene (C-2578A, G-1154A, and G-634C) have been associated with disease conditions. Although some studies suggest that interethnic differences exist in the distribution of these variants, no previous study has examined this hypothesis in admixed populations. We examined the distribution of these three clinically relevant VEGF single-nucleotide polymorphisms in 175 white and 185 black subjects. We have also estimated the haplotype distribution and assessed associations between these variants. Although the A-2578 and A-1154 variants were more common in whites (39% and 29%, respectively) than in blacks (29% and 16%, respectively; both p < 0.05), no significant interethnic differences were found with regards to the G-634C polymorphism. While the haplotype including the C-2578, G-1154, and G-634 variants was the most common in both ethnic groups, it was more common in blacks than in whites (p < 0.05). The haplotype including the C-2578, A-1154, and G-634 alleles and the haplotype including the C-2578, A-1154, and C-634 alleles were more common in whites than in blacks (both p < 0.05). These results show marked interethnic differences in the distribution of genetic variants of VEGF that may explain, at least in part, interethnic disparities in the susceptibility to cardiovascular diseases.