867 resultados para Body sensor network


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent years observed massive growth in wearable technology, everything can be smart: phones, watches, glasses, shirts, etc. These technologies are prevalent in various fields: from wellness/sports/fitness to the healthcare domain. The spread of this phenomenon led the World-Health-Organization to define the term 'mHealth' as "medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants, and other wireless devices". Furthermore, mHealth solutions are suitable to perform real-time wearable Biofeedback (BF) systems: sensors in the body area network connected to a processing unit (smartphone) and a feedback device (loudspeaker) to measure human functions and return them to the user as (bio)feedback signal. During the COVID-19 pandemic, this transformation of the healthcare system has been dramatically accelerated by new clinical demands, including the need to prevent hospital surges and to assure continuity of clinical care services, allowing pervasive healthcare. Never as of today, we can say that the integration of mHealth technologies will be the basis of this new era of clinical practice. In this scenario, this PhD thesis's primary goal is to investigate new and innovative mHealth solutions for the Assessment and Rehabilitation of different neuromotor functions and diseases. For the clinical assessment, there is the need to overcome the limitations of subjective clinical scales. Creating new pervasive and self-administrable mHealth solutions, this thesis investigates the possibility of employing innovative systems for objective clinical evaluation. For rehabilitation, we explored the clinical feasibility and effectiveness of mHealth systems. In particular, we developed innovative mHealth solutions with BF capability to allow tailored rehabilitation. The main goal that a mHealth-system should have is improving the person's quality of life, increasing or maintaining his autonomy and independence. To this end, inclusive design principles might be crucial, next to the technical and technological ones, to improve mHealth-systems usability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Thesis wants to highlight the importance of ad-hoc designed and developed embedded systems in the implementation of intelligent sensor networks. As evidence four areas of application are presented: Precision Agriculture, Bioengineering, Automotive and Structural Health Monitoring. For each field is reported one, or more, smart device design and developing, in addition to on-board elaborations, experimental validation and in field tests. In particular, it is presented the design and development of a fruit meter. In the bioengineering field, three different projects are reported, detailing the architectures implemented and the validation tests conducted. Two prototype realizations of an inner temperature measurement system in electric motors for an automotive application are then discussed. Lastly, the HW/SW design of a Smart Sensor Network is analyzed: the network features on-board data management and processing, integration in an IoT toolchain, Wireless Sensor Network developments and an AI framework for vibration-based structural assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for data collection from sensors dispersed in the environment is an increasingly important problem in the sector of telecommunications. LoRaWAN is one of the most popular protocols for low-power wide-area networks (LPWAN) that is made to solve the aforementioned problem. The aim of this study is to test the behavior of the LoRaWAN protocol when the gateway that collects data is implemented on a flying platform or, more specifically, a drone. This will be pursued using performance data in terms of access to the channel of the sensor nodes connected to the flying gateway. The trajectory of the aircraft is precomputed using a given algorithm and sensor nodes’ clusterization. The expected results are as follows: simulate the LoraWAN system behavior including the trajectory of the drone and the deployment of nodes; compare and discuss the effectiveness of the LoRaWAN simulator by conducting on-field trials, where the trajectory design and the nodes’ deployment are the same.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In questo studio è affrontato il progetto di un energy harvester destinato ad alimentare un nodo sensore impiegato per scopi di monitoraggio strutturale. La applicazione in questione è specifica per l'ambito ferroviario, dovendo il sistema essere collocato sul tirante di poligonazione della linea area di contatto. Sono state indagate modalità di conversione dell'energia dalle vibrazioni generate dal contatto fra catenaria e pantografo, studiandone la possibile integrazione con la conversione dell'energia solare tramite celle fotovoltaiche. Sono stati quindi progettati e realizzati due prototipi di energy harvester a vibrazioni, basati su tecnica di conversione rispettivamente elettromagnetica e piezoelettrica. La fase di progettazione è stata affinata tramite simulazioni MATLAB e COMSOL, utilizzando il metodo degli elementi finiti, ed è stato curato il progetto dei circuiti di regolazione della tensione generata dai dispositivi. Sulla base del consumo del nodo sensore misurato ne è stata simulata la alimentazione da parte di un energy harvester solare al variare del periodo dell'anno. I dispostivi realizzati sono stati valutati attraverso varie misurazioni e sono state indagate tra gli sviluppi futuri possibili approcci per il miglioramento della tecnologia realizzata.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a new modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In this study, the SVR models had been introduced and developed to predict body and carcass-related characteristics of 2 strains of broiler chicken. To evaluate the prediction ability of SVR models, we compared their performance with that of neural network (NN) models. Evaluation of the prediction accuracy of models was based on the R-2, MS error, and bias. The variables of interest as model output were BW, empty BW, carcass, breast, drumstick, thigh, and wing weight in 2 strains of Ross and Cobb chickens based on intake dietary nutrients, including ME (kcal/bird per week), CP, TSAA, and Lys, all as grams per bird per week. A data set composed of 64 measurements taken from each strain were used for this analysis, where 44 data lines were used for model training, whereas the remaining 20 lines were used to test the created models. The results of this study revealed that it is possible to satisfactorily estimate the BW and carcass parts of the broiler chickens via their dietary nutrient intake. Through statistical criteria used to evaluate the performance of the SVR and NN models, the overall results demonstrate that the discussed models can be effective for accurate prediction of the body and carcass-related characteristics investigated here. However, the SVR method achieved better accuracy and generalization than the NN method. This indicates that the new data mining technique (SVR model) can be used as an alternative modeling tool for NN models. However, further reevaluation of this algorithm in the future is suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La distorsione della percezione della distanza tra due stimoli puntuali applicati sulla superfice della pelle di diverse regioni corporee è conosciuta come Illusione di Weber. Questa illusione è stata osservata, e verificata, in molti esperimenti in cui ai soggetti era chiesto di giudicare la distanza tra due stimoli applicati sulla superficie della pelle di differenti parti corporee. Da tali esperimenti si è dedotto che una stessa distanza tra gli stimoli è giudicata differentemente per diverse regioni corporee. Il concetto secondo cui la distanza sulla pelle è spesso percepita in maniera alterata è ampiamente condiviso, ma i meccanismi neurali che manovrano questa illusione sono, allo stesso tempo, ancora ampiamente sconosciuti. In particolare, non è ancora chiaro come sia interpretata la distanza tra due stimoli puntuali simultanei, e quali aree celebrali siano coinvolte in questa elaborazione. L’illusione di Weber può essere spiegata, in parte, considerando la differenza in termini di densità meccano-recettoriale delle differenti regioni corporee, e l’immagine distorta del nostro corpo che risiede nella Corteccia Primaria Somato-Sensoriale (homunculus). Tuttavia, questi meccanismi sembrano non sufficienti a spiegare il fenomeno osservato: infatti, secondo i risultati derivanti da 100 anni di sperimentazioni, le distorsioni effettive nel giudizio delle distanze sono molto più piccole rispetto alle distorsioni che la Corteccia Primaria suggerisce. In altre parole, l’illusione osservata negli esperimenti tattili è molto più piccola rispetto all’effetto prodotto dalla differente densità recettoriale che affligge le diverse parti del corpo, o dall’estensione corticale. Ciò, ha portato a ipotizzare che la percezione della distanza tattile richieda la presenza di un’ulteriore area celebrale, e di ulteriori meccanismi che operino allo scopo di ridimensionare – almeno parzialmente – le informazioni derivanti dalla corteccia primaria, in modo da mantenere una certa costanza nella percezione della distanza tattile lungo la superfice corporea. E’ stata così proposta la presenza di una sorta di “processo di ridimensionamento”, chiamato “Rescaling Process” che opera per ridurre questa illusione verso una percezione più verosimile. Il verificarsi di questo processo è sostenuto da molti ricercatori in ambito neuro scientifico; in particolare, dal Dr. Matthew Longo, neuro scienziato del Department of Psychological Sciences (Birkbeck University of London), le cui ricerche sulla percezione della distanza tattile e sulla rappresentazione corporea sembrano confermare questa ipotesi. Tuttavia, i meccanismi neurali, e i circuiti che stanno alla base di questo potenziale “Rescaling Process” sono ancora ampiamente sconosciuti. Lo scopo di questa tesi è stato quello di chiarire la possibile organizzazione della rete, e i meccanismi neurali che scatenano l’illusione di Weber e il “Rescaling Process”, usando un modello di rete neurale. La maggior parte del lavoro è stata svolta nel Dipartimento di Scienze Psicologiche della Birkbeck University of London, sotto la supervisione del Dott. M. Longo, il quale ha contribuito principalmente all’interpretazione dei risultati del modello, dando suggerimenti sull’elaborazione dei risultati in modo da ottenere un’informazione più chiara; inoltre egli ha fornito utili direttive per la validazione dei risultati durante l’implementazione di test statistici. Per replicare l’illusione di Weber ed il “Rescaling Proess”, la rete neurale è stata organizzata con due strati principali di neuroni corrispondenti a due differenti aree funzionali corticali: • Primo strato di neuroni (il quale dà il via ad una prima elaborazione degli stimoli esterni): questo strato può essere pensato come parte della Corteccia Primaria Somato-Sensoriale affetta da Magnificazione Corticale (homunculus). • Secondo strato di neuroni (successiva elaborazione delle informazioni provenienti dal primo strato): questo strato può rappresentare un’Area Corticale più elevata coinvolta nell’implementazione del “Rescaling Process”. Le reti neurali sono state costruite includendo connessioni sinaptiche all’interno di ogni strato (Sinapsi Laterali), e connessioni sinaptiche tra i due strati neurali (Sinapsi Feed-Forward), assumendo inoltre che l’attività di ogni neurone dipenda dal suo input attraverso una relazione sigmoidale statica, cosi come da una dinamica del primo ordine. In particolare, usando la struttura appena descritta, sono state implementate due differenti reti neurali, per due differenti regioni corporee (per esempio, Mano e Braccio), caratterizzate da differente risoluzione tattile e differente Magnificazione Corticale, in modo da replicare l’Illusione di Weber ed il “Rescaling Process”. Questi modelli possono aiutare a comprendere il meccanismo dell’illusione di Weber e dare così una possibile spiegazione al “Rescaling Process”. Inoltre, le reti neurali implementate forniscono un valido contributo per la comprensione della strategia adottata dal cervello nell’interpretazione della distanza sulla superficie della pelle. Oltre allo scopo di comprensione, tali modelli potrebbero essere impiegati altresì per formulare predizioni che potranno poi essere verificate in seguito, in vivo, su soggetti reali attraverso esperimenti di percezione tattile. E’ importante sottolineare che i modelli implementati sono da considerarsi prettamente come modelli funzionali e non intendono replicare dettagli fisiologici ed anatomici. I principali risultati ottenuti tramite questi modelli sono la riproduzione del fenomeno della “Weber’s Illusion” per due differenti regioni corporee, Mano e Braccio, come riportato nei tanti articoli riguardanti le illusioni tattili (per esempio “The perception of distance and location for dual tactile pressures” di Barry G. Green). L’illusione di Weber è stata registrata attraverso l’output delle reti neurali, e poi rappresentata graficamente, cercando di spiegare le ragioni di tali risultati.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This demo presents BatNet, a 6LoWPAN Wireless Transducer Network, in a Home Automation context. Its suitability for such application is shown by means of several performance and usability tests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement (Schmidt number) is small for any bipartite split along an edge of the tree. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.