973 resultados para Blood vascular
Resumo:
Peripheral treatment with the cholinergic agonist pilocarpine induces intense salivation that is inhibited by central injections of the alpha(2)-adrenergic/imidazoline receptor agonist moxonidine. Salivary gland blood flow controlled by sympathetic and parasympathetic systems may affect salivation. We investigated the changes in mean arterial pressure (MAP) and in the vascular resistance in the submandibular/sublingual gland (SSG) artery, superior mesenteric (SM) artery and low abdominal aorta (hindlimb) in rats treated with intraperitoneal (i.p.) pilocarpine alone or combined with intracerebroventricular (i.c.v.) moxonidine. Male Holtzman rats with stainless steel cannula. implanted into lateral ventricle (LV) and anesthetized with urethane were used. Pilocarpine (4 mumol/kg of body weight) i.p. reduced SSG vascular resistance (-50 +/- 13% vs. vehicle: 5 +/- 3%). Pilocarpine i.p. also increased mesenteric vascular resistance (15 +/- 5% vs. vehicle: 2 +/- 3%) and MAP (16 +/- 3 mmHg, vs. vehicle: 2 +/- 3 mmHg). Moxonidine (20 nmol) i.c.v. increased SSG vascular resistance (88 +/- 12% vs. vehicle: 7 +/- 4%). When injected 15 min following i.c.v. moxonidine, pilocarpine i.p. produced no change on SSG vascular resistance. Pilocarpine-induced pressor responses and increase in mesenteric vascular resistance were not modified by i.c.v. moxonidine. The treatments produced no change in heart rate (HR) and hindlimb vascular resistance. The results show that (1) i.p. pilocarpine increases mesenteric vascular resistance and MAP and reduces salivary gland vascular resistance and (2) central moxonidine increases salivary gland vascular resistance and impairs pilocarpine-induced salivary gland vasodilatation. Therefore, the increase in salivary gland vascular resistance may play a role in the anti-salivatory response to central moxonidine. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background and Objective:Platelets contain factors, including VEGF and endostatin, that can modulate the healing process. We evaluated the effects of severe thrombocytopenia on periodontal healing in rats and determined the contribution of VEGF and endostatin to the healing process.Material and Methods:Rats were distributed into three test groups and two control groups. Cotton ligatures were placed at the gingival margin level of the lower first molar in the test groups. Sham-operated rats and rats in one of the periodontitis groups were killed 15 days later. Rats in the remaining two periodontitis groups had the ligatures removed in order to study the spontaneous recovery from the periodontal disease 15 days later, and these rats were treated with rabbit antiplatelet serum, in order to induce thrombocytopenia, or normal rabbit serum. An additional group without ligatures received antiplatet serum in the same period.Results:After ligature removal, rats treated with normal rabbit serum showed reduced myeloperoxidase activity, decreased alveolar bone loss and increased numbers of blood vessels. Thrombocytopenia caused a delay in alveolar bone regeneration, a decrease in the number of vessels and a modest decrease in myeloperoxidase activity. In the rats with periodontitis, serum endostatin concentrations were slightly decreased and serum VEGF remained unchanged compared with sham-operated animals. After ligature removal, a significant VEGF increase and endostatin decrease were observed in the rats treated with normal rabbit serum. Thrombocytopenia led to a dramatic fall in both VEGF and endostatin concentrations.Conclusion:Thrombocytopenia leads to a delay of periodontal healing in the situation of experimental periodontitis, which might be mediated in part by a decrease in the serum concentration of VEGF and endostatin derived from the platelets. However, other factors derived from the platelets may also have contributed to a delay of periodontal healing in the rats with thrombocytopenia.
Resumo:
The effects of temperature on lung and blood gases were measured in the South American rattlesnake (Crotalus durissus terrificus). Arterial blood and lung gas samples were obtained from chronically cannulated animals at 15, 25, and 35 degrees C. As expected for reptiles, arterial pH fell with increased temperature (0.018 U degrees C-1 between 15 and 25 degrees C and 0.011 U degrees C-1 between 25 and 35 degrees C) while lung gas PCO2 rose from 5.8 mmHg at 15 degrees C to 13.2 mmHg at 35 degrees C. Concurrently, lung gas PO2 declined from 132 mmHg at 15 degrees C to 120 mmHg at 35 degrees C, and arterial PO2 increased from 33 to 76 mmHg in that temperature range. Arterial haemoglobin O-2 saturation rose from 0.53 at 15 degrees C to 0.83 at 25 degrees C but became slightly reduced (0.77) with a further elevation of temperature to 35 degrees C. Arterial haemoglobin concentration increased from 1.96 to 2.53 mM between 15 and 35 degrees C, consistent with higher demands on oxygen delivery to tissues at elevated temperatures. Moreover, the substantial increase of haemoglobin O-2 saturation between 15 and 25 degrees C conforms to the idea that reduction of the central vascular right-to-left shunt (pulmonary bypass of systemic venous return) is associated with high metabolic demands. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the alkaline tide. Numerous studies on different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO3-](pl)) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO2 (PaCO2) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO2.Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO3 and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid-base disturbances were similar in magnitude to that mediated by digestion and exercise. Plasma [HCOT] increased from 18.4+/-1.5 to 23.7+/-1.0 mmol L-1 during digestion and was accompanied by a respiratory compensation where PaCO2 increased from 13.0+/-0.7 to 19.1+/-1.4 mm Hg at 24 h. As a result, pHa decreased slightly, but were significantly below fasting levels 36 h into digestion. Infusion of NaHCO3 (7 mmol kg(-1)) resulted in a 10 mmol L-1 increase in plasma [HCO3-] within 1 h and was accompanied by a rapid elevation of pHa (from 7.58+/-0.01 to 7.78+/-0.02). PaCO2, however, did not change following HCO3- infusion, which indicates a lack of respiratory compensation. Following infusion of HCl (4 mmol kg(-1)), plasma pHa decreased by 0.07 units and [HCO3-](pl) was reduced by 4.6 mmol L-1 within the first 3 h. PaCO2, however, was not affected and there was no evidence for respiratory compensation.Our data show that digesting rattlesnakes exhibit respiratory compensations to the alkaline tide, whereas artificially induced metabolic acid-base disturbances of same magnitude remain uncompensated. It seems difficult to envision that the central and peripheral chemoreceptors would experience different stimuli during these conditions. One explanation for the different ventilatory responses could be that digestion induces a more relaxed state with low responsiveness to ventilatory stimuli. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background Damage to the corneal epithelium causes not only a reaction for its repair but also affects other parts of the cornea as well as different components of the anterior segment of the eye. The purpose of this investigation was to analyze the consequences, following epithelial and limbal damage, to the iris of rabbits (Oryctolagus cuniculus).Methods The corneal epithelium was thoroughly scraped followed by surgical excision of the limbus. Next, (3)H-thymidine ((3)H-TdR) was injected intravitreally both into the right (experimental) and left (control) eyes which had their anterior segments processed for autoradiography at intervals of 2, 7 and 21 days after surgery (three rabbits per interval). The irises were also examined with scanning-electron and confocal microscopy after Evans blue injection.Results There was a high frequency of labeling in the cells of the iris blood vessels in the experimental eye, particularly the endothelial ones. The ratio of labeled cells between experimental and control irises was 40:1, with a population of nuclei increasing by 25% and remaining labeled up to 21 days. There was also an increase in the volume of the iris vasculature as shown by confocal microscopy. The high labeling frequencies of the vascular cells were observed throughout the iris from the ciliary to the pupillary regions.Conclusions The lesions on the corneal epithelium elicit proliferation of the iris vascular cells, mainly its endothelium, as well as an early breakdown of the blood-aqueous barrier. The daughter cells resulting from the damage to the eye surface were detected up to 21 days after a single injection of (3)H-TdR, most likely due to their slow turnover. As a consequence of this proliferation, the vasculature of the iris increased in volume.
Resumo:
INTRODUÇÃO: Os leiomiomas são neoplasias benignas do músculo liso que ocorrem mais comumente nos tratos geniturinário e gastrintestinal, entretanto são raros na cavidade bucal, na qual provavelmente a maioria desses tumores tem sua origem a partir de músculo liso vascular. OBJETIVOS: Relatar dois casos com história clínica semelhante, confrontando seus aspectos com aqueles encontrados na literatura. RELATO DOS CASOS: Dois casos de mulheres na quinta e sexta décadas de vida apresentando nódulo submucoso em ventre lingual. Após exame microscópico que revelou numerosos vasos sangüíneos entremeados a células fusiformes, com núcleos ovalados ou alongados, e exame imuno-histoquímico com positividade para actina de músculo liso nos dois casos, o diagnóstico final foi leiomioma vascular. CONCLUSÃO: O estudo do leiomioma vascular bucal é de extrema importância devido à raridade e semelhança desse com outras lesões da cavidade bucal. A análise imuno-histoquímica é importante para o diagnóstico final do leiomioma.
Resumo:
O exercício aeróbio promove efeitos benéficos na prevenção e tratamento de doenças como hipertensão arterial, aterosclerose, insuficiência venosa e doença arterial periférica. Os receptores β-adrenérgicos estão presentes em várias células. No sistema cardiovascular, promovem inotropismo e cronotropismo positivo cardíaco e relaxamento vascular. Embora os efeitos do exercício tenham sido investigados em receptores cardíacos, estudos focados nos vasos são escassos e controversos. Esta revisão abordará os efeitos do exercício físico sobre os receptores β-adrenérgicos vasculares em modelos animais e humanos e os mecanismos celulares envolvidos na resposta relaxante. em geral, os estudos mostram resultantes conflitantes, onde observam diminuição, aumento ou nenhum efeito do exercício físico sobre a resposta relaxante. Assim, os efeitos do exercício na sensibilidade β-adrenérgica vascular merecem maior atenção, e os resultados mostram que a área de fisiopatologia vascular é um campo aberto para a descoberta de novos compostos e avanços na prática clínica.
Resumo:
The genetic basis for dementias is complex. A common polymorphism in the apolipoprotein E (APOE) gene is considered to be the major risk factor in families with sporadic and late-onset Alzheimer's disease as well as in the general population. The distribution of alleles and genotypes of the APOE gene in late-onset Alzheimer's disease (N = 68), other late-life dementias (N = 39), and in cognitively normal controls (N = 58) was determined, as also was the risk for Alzheimer's disease associated with the epsilon4 allele. Peripheral blood samples were obtained from a total of 165 individuals living in Brazil aged 65-82 years. Genomic DNA was amplified by the polymerase chain reaction and the products were digested with HhaI restriction enzyme. APOE epsilon2 frequency was considerably lower in the Alzheimer's disease group (1%), and the epsilon3 allele and epsilon3/epsilon3 genotype frequencies were higher in the controls (84 and 72%, respectively) as were the epsilon4 allele and epsilon3/epsilon4 genotype frequencies in Alzheimer's disease (25 and 41%, respectively). The higher frequency of the epsilon4 allele in Alzheimer's disease confirmed its role as a risk factor, while epsilon2 provided a weak protection against development of the disease. However, in view of the unexpectedly low frequency of the epsilon4 allele, additional analyses in a more varied Brazilian sample are needed to clarify the real contribution of apolipoprotein E to the development of Alzheimer's disease in this population.
Resumo:
Blood pressure and vascular reactivity to phenylephrine (hypertensor) and sodium nitroprusside (hypotensor) was determined on male broilers taken from 5 commercial strains (Arbor Acres, Cobb, Hubbard-Peterson, ISA and Ross), with 21-28 days of age. Blood pressure was measured in the femoral artery by introducing a cannula attached to a pressure transdutor and recorded on a polygraph. Hyper or hypopressor substances were injected via jugular vein at 5, 10, 20 and 40-mcg kg(-1) body weight. No differences in the systolic, diastolic and mean blood pressure and no significant blood pressure responses to phenylephrine and sodium nitroprusside were observed among strains. Throughout strain and treatment blood pressures (systolic, diastolic and mean) were high in both experiments. This suggests that these modern male broilers have high arterial pressure possibly due to an indirect selection effect.
Resumo:
Long-term propranolol treatment reduces arterial blood pressure in hypertensive individuals mainly by reducing peripheral vascular resistance, but mechanisms underlying their vasodilatory effect remain poorly investigated. This study aimed to investigate whether long-term propranolol administration ameliorates the impairment of relaxing responses of aorta and mesenteric artery from rats made hypertensive by chronic nitric oxide (NO) deficiency, and underlying mechanisms mediating this phenomenon. Male Wistar rats were treated with N-omega-Nitro-L-arginine methyl ester (L-NAME; 20 mg/rat/day) for four weeks. DL-Propranolol (30 mg/rat/day) was given concomitantly to L-NAME in the drinking water. Treatment with L-NAME markedly increased blood pressure, an effect largely attenuated by DL-propranolol. In phenylephrine-precontracted aortic rings, the reduction of relaxing responses for acetylcholine (0.001-10 mu M) in L-NAME group was not modified by DL-propranolol, whereas in mesenteric rings the impairment of acetylcholine-induced relaxation by L-NAME was significantly attenuated by DL-propranolol. In mesenteric rings precontracted with KCl (80 MM), DL-propranolol failed to attenuate the impairment of acetylcholine-induced relaxation by L-NAME. The contractile responses to extracellular CaCl2 (1-10 mM) were increased in L-NAME group, and co-treatment with DL-propranolol reduced this response in both preparations in most Ca2+ concentrations used. The NO2/NO3 plasma levels and superoxide dismutase (SOD) activity were reduced in L-NAME-treated rats, both of which were significantly prevented by DL-propranolol. In conclusion, propranolol-induced amplification of the relaxation to acetylcholine in mesenteric arteries from L-NAME-treated rats is sensitive to depolarization. Additional mechanisms involving blockade of Ca2+ entry in the vascular smooth muscle and increase in NO bioavailability contributes to beneficial effects of long-term propranolol treatment. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In previous studies using bilateral carotid occlusion in conscious freely moving rats we suggested that aortic baroreceptors may play a more important role in the regulation of hindlimb than in renal and mesenteric vascular resistances. In the present study we performed electrical stimulation of the aortic baroreceptor nerve and analyzed the changes in mean arterial pressure and in hindlimb, renal, and mesenteric vascular resistances. All the experiments were performed under urethan anesthesia. Unilateral electrical stimulation (3 V, 2 ms, 50 Hz) of the aortic baroreceptor nerve produced a fall in arterial pressure (-27 +/- 3 mmHg) and an important reduction in hindlimb vascular resistance (-43 +/- 5%), with an increase in renal (+3 +/- 14%) and mesenteric (+48 +/- 12%) vascular resistances. Similar changes in arterial pressure as well as in the resistance of the three vascular beds studied were also observed during electrical stimulation of the aortic baroreceptor nerve in rats with bilateral carotid baroreceptor denervation or in rats treated with methylatropine. The data obtained with electrical stimulation indicated that aortic baroreceptors play a more important role in the regulation of blood flow in hindlimb than in renal and mesenteric vascular beds.
Resumo:
Granulocyte colony-stimulating factor (G-CSF) regulates granulocyte precursor cell proliferation, neutrophil survival, and activation. Cyclic hematopoiesis, a disease that occurs both in humans and grey collie dogs is characterized by cyclical variations in blood neutrophils. Although the underlying molecular defect is not known, long-term daily administration of recombinant G-CSF eliminates the severe recurrent neutropenia, indicating that expression of G-CSF by gene therapy would be beneficial. As a prelude to preclinical studies in affected collie dogs, we monitored hematopoiesis in rats receiving vascular smooth muscle cells transduced to express G-CSF. Cells transduced with LrGSN, a retrovirus expressing rat G-CSF, were implanted in the carotid artery and control animals received cells transduced with LASN, a retrovirus expressing human adenosine deaminase (ADA). Test animals showed significant increases in neutrophil counts for at least 7 weeks, with mean values of 3,670 +/- 740 cells/mu l in comparison to 1,870 +/- 460 cells/mu l in controls (p < 0.001). Thus, in rats G-CSF gene transfer targeted at vascular smooth muscle cells initiated sustained production of 1,800 neutrophils/mu l, a cell number that would provide clinical benefit to patients. Lymphocytes, red cells and platelets were not different between control and test animals (p > 0.05). These studies indicate that retrovirally transduced vascular smooth muscle cells can provide sustained clinically useful levels of neutrophils in vivo.
Resumo:
The placental vasculature of five hystricomorph rodents was examined by latex injection of the blood vessels, immunohistochemistry and scanning electron microscopy of vessel casts. The pattern of branching of the vessels is described at the level of fine structure. The placenta is divided into lobes separated by interlobular trophoblast. Fetal arteries course through the interlobular areas and give rise to capillaries from which blood drains into veins at the centre of the lobes. Maternal blood reaches the placenta through spiral arteries that pass around the perimeter of the subplacenta. They supply large maternal blood sinuses, lined by trophoblast, which run through the interlobular areas and into the centre of the lobes. Here they supply fine channels that run parallel to the fetal capillaries, so that maternal blood flows from the centre of the lobe to the periphery. This arrangement provides the morphological basis for countercurrent exchange. The maternal channels of the labyrinth drain into spaces formed by the latticework of the interlobular trophoblast and thence through venous lacunae to a basal venous lacunar ring. The subplacenta is supplied by a single fetal artery. The vessels within the subplacenta pursue a tortuous course with dilatations and constrictions as in an endocrine gland. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Low O-2 levels in the lungs of birds and mammals cause constriction of the pulmonary vasculature that elevates resistance to pulmonary blood flow and increases pulmonary blood pressure. This hypoxic pulmonary vasoconstriction (HPV) diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts and is considered important for the local matching of ventilation to blood perfusion. In the present study, the effects of acute hypoxia on pulmonary and systemic blood flows and pressures were measured in four species of anesthetized reptiles with diverse lung structures and heart morphologies: varanid lizards (Varanus exanthematicus), caimans (Caiman latirostris), rattlesnakes (Crotalus durissus), and tegu lizards (Tupinambis merianae). As previously shown in turtles, hypoxia causes a reversible constriction of the pulmonary vasculature in varanids and caimans, decreasing pulmonary vascular conductance by 37 and 31%, respectively. These three species possess complex multicameral lungs, and it is likely that HPV would aid to secure ventilation-perfusion homogeneity. There was no HPV in rattlesnakes, which have structurally simple lungs where local ventilation-perfusion inhomogeneities are less likely to occur. However, tegu lizards, which also have simple unicameral lungs, did exhibit HPV, decreasing pulmonary vascular conductance by 32%, albeit at a lower threshold than varanids and caimans (6.2 kPa oxygen in inspired air vs. 8.2 and 13.9 kPa, respectively). Although these observations suggest that HPV is more pronounced in species with complex lungs and functionally divided hearts, it is also clear that other components are involved.