994 resultados para Biosynthetic cellulose membrane
Resumo:
Densely packed nanoparticles distributed in a stable and robust thin film is a highly preferred system for utilizing the various applications of nanoparticles. Here, we report covalent bond mediated layer-by-layer (LbL) self-assembled thin films of nanoparticles embedded in polymer membrane. Polymer with complementary functional group is utilized for fabrication of thin film via covalent bonding. UV-visible spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to monitor the growth of LbL thin film. Subsequently, the composite thin film is used for catalysis of an organic electron transfer reaction of p-nitrophenol to p-aminophenol by sodium borohydride. The catalytic activity of these composite films is assayed multiple times, proving its applicability as a catalyst. The kinetic data obtained by monitoring reduction of p-nitrophenol suggest that the reaction rates are directly related to the sizes of the nanoparticle and porosity of the membrane.
Resumo:
Stable hollow microcapsules composed of sodium carboxymethyl cellulose (CMC) and poly (allylamine hydrochloride) (PAH) were produced by layer-by-layer adsorption of polyelectrolytes onto CaCO 3 microparticles. Subsequently the core was removed by addition of chelating agents for calcium ions. Zeta potential studies showed charge reversal with deposition of successive polyelectrolyte layers, indicating that the alternate electrostatic adsorption of polyelectrolytes of opposite charge was successfully achieved. The size and surface morphology of the capsules was characterized by various microscopy techniques. The pH responsive loading behavior was elucidated by confocal laser scanning microscopy (CLSM) studies using fluorescence labeled dextran (FITC-dextran) and labeled BSA (FITC-BSA). CLSM images confirmed the open (pH ≤ 6) and closed state (pH ≥ 7) of the capsules. A model drug bovine serum albumin (BSA) was spontaneously loaded below its isoelectric point into hollow microcapsules, where BSA is positively charged. The loading of the BSA into the microcapsules was found to be dependent on the feeding concentration and pH of the medium. 65 of the loaded BSA was released over 7h of which about 34 was released in the first hour. These findings demonstrate that (CMC/PAH) 2 hollow capsules can be further exploited as a potential drug delivery system.
Resumo:
Glycopeptidolipids (GPLs) are dominant cell surface molecules present in several non-tuberculous and opportunistic mycobacterial species. GPLs from Mycobacterium smegmatis are composed of a lipopeptide core unit consisting of a modified C-26-C-34 fatty acyl chain that is linked to a tetrapeptide (Phe-Thr-Ala-alaninol). The hydroxyl groups of threonine and terminal alaninol are further modified by glycosylations. Although chemical structures have been reported for 16 GPLs from diverse mycobacteria, there is still ambiguity in identifying the exact position of the hydroxyl group on the fatty acyl chain. Moreover, the enzymes involved in the biosynthesis of the fatty acyl component are unknown. In this study we show that a bimodular polyketide synthase in conjunction with a fatty acyl-AMP ligase dictates the synthesis of fatty acyl chain of GPL. Based on genetic, biochemical, and structural investigations, we determine that the hydroxyl group is present at the C-5 position of the fatty acyl component. Our retrobiosynthetic approach has provided a means to understand the biosynthesis of GPLs and also resolve the long-standing debate on the accurate structure of mycobacterial GPLs.
Resumo:
Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.
Resumo:
Bacteria use a number of small basic proteins for organization and compaction of their genomes. By their interaction with DNA, these nucleoid-associated proteins (NAPs) also influence gene expression. Rv3852, a NAP of Mycobacterium tuberculosis, is conserved among the pathogenic and slow-growing species of mycobacteria. Here, we show that the protein predominantly localizes in the cell membrane and that the carboxy-terminal region with the propensity to form a transmembrane helix is necessary for its membrane localization. The protein is involved in genome organization, and its ectopic expression in Mycobacterium smegmatis resulted in altered nucleoid morphology, defects in biofilm formation, sliding motility, and change in apolar lipid profile. We demonstrate its crucial role in regulating the expression of KasA, KasB, and GroEL1 proteins, which are in turn involved in controlling the surface phenotypes in mycobacteria.
Resumo:
Bacterial surface polymers play a major role in the adhesion of bacterial cells to solid surfaces. Lipopolysaccharides (LPS) are essential constituents of the cell walls of almost all Gram-negative bacteria. This paper reports the results of the investigations on the role of outer membrane exopolymers (LPS) of the chemolithotroph, Acidithiobacillus ferrooxidans, in adsorption of the cells onto pyrite and chalcopyrite. Optimization of EDTA treatment for removal of LPS from cell surface and the surface characterization of EDTA-treated cells are outlined. There was no change in cell morphology or loss in cell motility upon treatment with upto 0.04 mM EDTA for 1 h. Partial removal of LPS by EDTA treatment resulted in reduced adsorption of the cells on both pyrite and chalcopyrite. The protein profile of the EDTA-extractable fraction showed presence of certain outer membrane proteins indicating that EDTA treatment results in temporary gaps in the outer membrane. Also, specificity towards pyrite compared to chalcopyrite that was exhibited by untreated cells was lost when their exopolymer layers were stripped off, which could be attributed to the role of outer membrane proteins in the mineral-specificity exhibited by the bacteria. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Pore-forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. The dynamics of lysis and underlying self-assembly or oligomerization pathways leading to pore formation are incompletely understood. In this manuscript the pore-forming kinetics and lysis dynamics of Cytolysin-A (ClyA) toxins on red blood cells (RBCs) are quantified and compared with experimental lysis data. Lysis experiments are carried out on a fixed mass of RBCs, under isotonic conditions in phosphate-buffered saline, for different initial toxin concentrations ranging from 2.94-14.7 nM. Kinetic models which account for monomer binding, conformation and oligomerization to form the dodecameric ClyA pore complex are developed and lysis is assumed to occur when the number of pores per RBC (n(p)) exceeds a critical number, n(pc). By analysing the model in a sublytic regime (n(p) < n(pc)) the number of pores per RBC to initiate lysis is found to lie between 392 and 768 for the sequential oligomerization mechanism and between 5300 and 6300 for the non-sequential mechanism. Rupture rates which are first order in the number of RBCs are seen to provide the best agreement with the lysis experiments. The time constants for pore formation are estimated to lie between 1 and 20 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Cell rupture takes places in 100s of seconds, and occurs predominantly with a steady number of pores ranging from 515 to 11 000 on the RBC surface for the sequential mechanism. Both the sequential irreversible and non-sequential kinetics provide similar predictions of the hemoglobin release dynamics, however the hemoglobin released as a function of the toxin concentration was accurately captured only with the sequential model. Each mechanism develops a distinct distribution of mers on the surface, providing a unique experimentally observable fingerprint to identify the underlying oligomerization pathways. Our study offers a method to quantify the extent and dynamics of lysis which is an important aspect of developing novel drug and gene delivery strategies based on pore-forming toxins.
Resumo:
Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles (AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.
Resumo:
Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.