937 resultados para Biomaterials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian efforts to provide orthopaedic surgeons with living, load-bearing scaffolds suitable for current joint (knee and hip) replacement surgery, non-union fracture repair, and miniscal and growth plate cartilage regeneration are being lead by teams at the Institute for Medical and Veterinary Science and Women's and Children's Hospital in Adelaide; the Peter MacCallum and St Vincent's Medical Research Institutes in Melbourne; and the Mater Medical Research Institute and new Institute for Health and Biomedical Innovation at QUT, Brisbane. In each case multidisciplinary teams are attempting to develop autologous living tissue constructs, utilising mesenchymal stem cells (MSC), with the intention of effecting seamless repair and regeneration of skeletal trauma and defects. In this article we will briefly review current knowledge of the phenotypic properties of MSC and discuss the potential therapeutic applications of these cells as exemplified by their use in cartilage repair and tissue engineering based approaches to the treatment of skeletal defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMP-7) are key regulators of angiogenesis and osteogenesis during bone regeneration. The aim of this study was to investigate the possibility of realizing sequential release of the two growth factors using a novel composite scaffold. Poly(lactic-co-glycolic acid) (PLGA)-Akermanite (AK) microspheres were used to make the composite scaffold, which was then loaded with BMP-7, followed by embedding in a gelatin hydrogel matrix loaded with VEGF. The release profiles of the growth factors were studied and selected osteogenic related markers of bone marrow stromal cells (BMSCs) were analysed. It was shown that the composite scaffolds exhibited a fast initial burst release of VEGF within the first 3 days and a sustained slow release of BMP-7 over the full period of 20 days. The in vitro proliferation and differentiation of the BMSCs cultured in the osteogenic medium were enhanced by 1 to 2 times, resulting from the additionally and sequentially release of growth factors from the PLGA-AK/gelatin composite scaffolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous SiO2 scaffolds with mesopore structure (named as MS scaffolds) have been proposed as suitable for bone tissue engineering due to their excellent drug-delivery ability; however, the mineralization and cytocompatibility of MS scaffolds are far from optimal for bone tissue engineering, and it is also unclear how the delivery of drugs from MS scaffolds affects osteoblastic cells. The aims of the present study were to improve the mineralization and cytocompatibility of MS scaffolds by coating mussel-inspired polydopamine on the pore walls of scaffolds. The effects of polydopamine modification on MS scaffolds was investigated with respect to apatite mineralization and the attachment, proliferation and differentiation of bone marrow stromal cells (BMSCs), as was the release profile of the drug dexamethasone (DEX). Our results show that polydopamine can readily coat the pore walls of MS scaffolds and that polydopamine-modified MS scaffolds have a significantly improved apatite-mineralization ability as well as better attachment and proliferation of BMSCs in the scaffolds, compared to controls. Polydopamine modification did not alter the release profile of DEX from MS scaffolds but the sustained delivery of DEX significantly improved alkaline phosphatase (ALP) activity of BMSCs in the scaffolds. These results suggest that polydopamine modification is a viable option to enhance the bioactivity of bone tissue engineering scaffolds and, further, that DEX-loaded polydopamine MS scaffolds have potential uses as a release system to enhance the osteogenic properties of bone tissue engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the filling and reconstruction of non-healing bone defects, the application of porous ceramic scaffold as bone substitutes is considered to be a reasonable choice. In bone tissue engineering, an ideal scaffold must satisfy several criterias such as open porosity, having high compressive strength (it depends where in body, and if external fixatures are used) and the practicability for cell migration. Many researchers have focused on enhancing the mechanical properties of hydroxyapatite scaffolds by combining it with other biomaterials, such as bioglass and polymers. Nevertheless, there is still a lack of suitable scaffolds based on porous biomaterials. In this study, zirconia scaffolds from two different templates (polyurethane (PU) and Acrylonitrile Butadiene Styrene (ABS) templates) were successfully fabricated with dissimilar fabrication techniques. The scaffold surfaces were further modified with mesoporous bioglass for the purpose of bone tissue engineering. In the study of PU template scaffold, high porosity (~88%) sol-gel derived yttria-stabilized zirconia (YSZ) scaffold was prepared by a polyurethane (PU) foam replica method using sol-gel derived zirconia for the first time, and double coated with Mesoporous Bioglass (MBGs) coating. For the ABS template scaffold, two types of templates (cube and cylinder) with different strut spacings were used and fabricated by a 3D Rapid Prototyper. Subsequently, zirconia scaffolds with low porosity (63±2.8% to 68±2.5%) were fabricated by embedding the zirconia powder slurry into the ABS templates and burning out the ABS to produce a uniform porous structure. The zirconia scaffolds were double coated with mesoporous bioglass by dip coating for the first time. The porosities of the scaffolds were calculated before and after coating. The microstructures were then examined using scanning electron microscopy and the mechanical properties were evaluated using compressive test. Accordingly, relationships between microstructure, processing and mechanical behaviour of the porous zirconia was discussed. Scaffold biocompatibility and bioactivity was also evaluated using a bone marrow stromal cell (BMSC) proliferation test and a simulated body fluid test.