917 resultados para Binding free energy
Resumo:
A heterotroph Paenibacillus polymyxa bacteria is adapted to pyrite, chalcopyrite, galena and sphalerite minerals by repeated subculturing the bacteria in the presence of the mineral until their growth characteristics became similar to the growth in the absence of mineral. The unadapted and adapted bacterial surface have been chemically characterised by zeta-potential, contact angle, adherence to hydrocarbons and FT-IR spectroscopic studies. The surface free energies of bacteria have been calculated by following the equation of state and surface tension component approaches. The aim of the present paper is to understand the changes in surface chemical properties of bacteria during adaptation to sulfide minerals and the projected consequences in bioflotation and bioflocculation processes. The mineral-adapted cells became more hydrophilic as compared to unadapted cells. There are no significant changes in the surface charge of bacteria before and after adaptation, and all the bacteria exhibit an iso-electric point below pH 2.5. The contact angles are observed to be more reliable for hydrophobicity assessment than the adherence to hydrocarbons. The Lifschitz–van der Waals/acid–base approach to calculate surface free energy is found to be relevant for mineral–bacteria interactions. The diffuse reflectance FT-IR absorbance bands for all the bacteria are the same illustrating similar surface chemical composition. However, the intensity of the bands for unadapted and adapted cells is significantly varied and this is due to different amounts of bacterial secretions underlying different growth conditions.
Resumo:
The surface properties of coal and solution pH play a major role in determining the adhesion of microorganisms. In this study, three Indian coal samples with different compositions have been used and the adhesion of the bacterium Bacillus polymyxa to these coals has been investigated. It was found that due to the high ash content of coal, the zeta-potential was negative over most of the pH range which is close to the values exhibited by pure quartz as well as B. polymyxa. Similarly, the surface free energy components of coal (derived from contact angle measurements) showed that the electron-donor component increased with ash content. Adhesion experiments revealed that maximum adhesion of the bacterium B. polymyxa occurred on to the coal samples around the point-of-zero-charge of the coal and the bacterium i.e. about pH 2. Further, adhesion was found to be dependent on the ash content and the surface free energy of the coals. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The application of Bacillus subtilis as a flocculant for fine coal has been reported here. Zeta-potential measurements showed that both the coal and bacteria had similar surface charge as a function of pH. Surface free energy calculations showed that the coal was hydrophobic while the bacterium was hydrophilic. The adhesion of the bacteria to coal and subsequent settling was studied in detail. Adhesion of bacteria to coal surface and subsequent settling of coal was found to be quick. Both adhesion and settling were found to be independent of pH, which makes the process very attractive for field applications. The presence of an electrolyte along with the bacterium was found to not only enhance adhesion of bacteria, but also produce a clear supernatant. Further, the settled fraction was more compact than with bacteria alone. Interaction energy calculations using the extended DLVO theory showed that the electrical forces along with the acid-base interaction energy play a dominant role in the lower pH range. Above pH 7, the acid-base interaction energy is the predominant attractive force and is sufficient enough to overcome the repulsive forces due to electrical charges to brine about adhesion and thus settling of fine coal. With increase in electrolyte concentration, the change in total interaction energy with pH is minimal which probably leads to better adhesion and hence settling. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A solid oxide galvanic cell and a gas-solid (View the MathML source) equilibration technique have been used to measure the activities of the solutes in the α-solid solutions of silver with indium and tin. The results are consistent with the information now available for the corresponding liquid alloys, the phase diagram and the heats of mixing of the solid alloy. When the results of this study are taken together with published data for the α-solid solutions in Ag + Cd system, it is found that the variation of the excess partial free energy of the solute with mole fraction can be correlated to the electron/atom ratio. The significant thennodynamic parameter that explains the Hume-Rothery findings in these alloys appears to be the rate of change of the excess partial free energy with composition near the phase boundary, and this in turn reflects the value of the solute-solute interaction energy.
Resumo:
Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.
Resumo:
Thin foils of copper, silver and gold were equilibrated with tetragonal GeO2 under controlled View the MathML source gas streams at 1000 K. The equilibrium concentration of germanium in the foils was determined by the X-ray fluorescence technique. The standard free energy of formation of tetragonal GeO2 was measured by a solid oxide galvanic cell. The chemical potential of germanium calculated from the experimental data and the free energies of formation of carbon monoxide and carbon dioxide was found to decrease in the sequence Ag + Ge > Au + Ge > Cu + Ge. The more negative value for the chemical potential of germanium in solid copper, compared to that in solid gold, cannot be explained in terms of the strain energy factor, electro-negativity differences or the vaporization energies of the solvent, and suggests that the d band and its hybridization with s electrons are an important factor in determining the absolute values for the chemical potential in dilute solutions. However, the variation of the chemical potential with solute concentration can be correlated to the concentration of s and p electrons in the outer shell.
Resumo:
he thermodynamic properties of mono- and dicalcium stannates have been determined in the temperature range 973–-1423°K from the electromotive force measurements on solid oxide galvanic cells[dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]0[sub 3] - ThO[sub 2]//SnO[sub 2] + Sn, W, Pt][dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]O[sub 3] - ThO[sub 2]//CaSnO[sub 3] + SnO[sub 2] + Sn, W, Pt][dformula Pt, Ni + NiO//CaO - ZrO[sub 2]/Y[sub 2]O[sub 3] - ThO[sub 2]/Ca[sub 2]SnO[sub 4] + CaSnO[sub 3] + Sn, W, Pt]and [dformula Pt, Ni + NiO//CaO - ZrO[sub 2]sol;Y[sub 2]O[sub 3] - ThO[sub 2]//Ca[sub 2]SnO[sub 4] + CaO, W, Pt] The Gibbs free energy changes accompanying the formation of the stannates from component oxides may be represented by the equations[dformula 2CaO + SnO[sub 2] --> Ca[sub 2]SnO[sub 4]][dformula Delta G[degree] = - 17,040 + 0.85T ([plus-minus]300) cal][dformula CaO + SnO[sub 2] --> CaSnO[sub 3]][dformula Delta G[degree] = - 17,390 + 2.0T ([plus-minus]300) cal]The partial pressures of the tin bearing oxide species resulting from the decomposition of the stannates have been calculated as a function of the oxygen partial pressure by combining the results of this study with published information on the partial pressures and composition of oxide species over stannic oxide.
Resumo:
The standard free energies of formation of Zn2Ti04 and ZnTi03 have been determined in the temperature range 930° to i ioo'x from electromotive force measurements on reversible solid oxide galvanic cells;Ag-5at%znll I Pt, + CaO-Zr02 ZnO I II Ag-5at%Zn Y20r Th02 CaO-Zr02 + ,Pt Zn2Ti04+ ZnTi03 and II Ag-5at%Zn CaO-Zr02 + ,Pt ZnTi03+ Ti02 The values may be expressed by the equations,2ZnO (wurtz) + Ti02(rut) -> Zn2Ti04(sp), f:!:.Go = -750-2-46T (±75)cal;ZnO(wurtz) +Ti02(rut) -> ZnTi03(ilmen) ,f:!:.Co = -]600-0·]99T(±50)cal.Combination of the free energy values with the calorimetric heat of formation, and low-temperature and high-temperature heat capacity of Zn2Ti04 reported in literature, suggests a residual entropy of ],9 (±0·6) cal K-1 mol ? for the cubic spinel. Ideal mixing of Zn2+ and Ti4+ ions on the octahedral sites would result in a configurational contribution to the entropy of 2· 75 cal K-1 rnol ".The difference is indicative of short-range ordering of cations on octahedral sites.
Resumo:
The compositions of the (Mn,Co)O solid solution with rock salt structure in equilibrium with (Mn,Co)Cr2O4 and (Mn,Co)Al2O4 spinel solid solutions have been determined by X-ray diffraction measurements at 1100° C and an oxygen partial pressure of 10–10 atm. The ion exchange equilibria are quantitatively analysed, using values for activities in the (Mn,Co)O solid solution available in the literature, in order to obtain activities in the spinel solid solutions. The MnAl2O4-CoAl2O4 solid solution exhibits negative deviations from Raoult's law, consistent with the estimated cation disorder in the solid solution, while the MnCr2O4-CoCr2O4 solid solution shows slightly positive deviations. The difference in the Gibbs free energy of formation of the two pure chromites and aluminates derived from the results of this study are in good agreement with recent results obtained from solid oxide galvanic cells and gas-equilibrium techniques.
Resumo:
The solubility of oxygen in liquid gallium in the temperature range 775 –1125 °C and in liquid gallium-copper alloys at 1100 °C, in equilibrium with β-Ga2O3, has been measured by an isopiestic equilibrium technique. The solubility of oxygen in pure gallium is given by the equation log (at.% O) = −7380/T + 4.264 (±0.03) Using recently measured values for the standard free energy of formation of β-Ga2O3 and assuming that oxygen obeys Sievert's law up to the saturation limit, the standard free energy of solution of oxygen in liquid gallium may be calculated : View the MathML sourceΔ°298 = −52 680 + 6.53T (±200) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which the activity is equal to atomic per cent. The effect of copper on the activity of oxygen dissolved in liquid gallium is found to be in good agreement with that predicted by a recent quasichemical model in which it was assumed that each oxygen is interstitially coordinated to four metal atoms and that the nearest neighbour metal atoms lose approximately half their metallic cohesive energies.
Resumo:
The activity of NiAl2O4 in NiAl2O4MgAl2O4 solid solutions has been measured by using a solid oxide galvanic cell of the type, Pt, Ni + NiAl2O4 + Al2O3(α)/CaOZrO2/Ni + NixMg1−xAl2O4 + Al2O3(α). Pt, in the temperature range 750–1150°C. The activities in the spinel solid solutions show negative deviations from Raoult's law. The cation distribution in the solid solutions has been calculated using site preference energies independent of composition for Ni2+, Mg2+, and Al3+ ions obtained from crystal field theory and measured cation disorder in pure NiAl2O4 and MgAl2O4, and assumi g ideal mixing of cations on the tetrahedral and octahedral positions. The calculated values correctly predict the decrease in the fraction, α, of Ni2+ ions on tetrahedral sites for 1>x>0.25, observed by Porta et al. [J. Solid State Chem.11, 135 (1974)] but do not support their tentative evidence for an increase in α for x < 0.25. The measured excess free energy of mixing can be completely accounted for by using either the calculated or the measured cation distributions. This suggests that the Madelung energy is approximately a linear function of composition in the solid solutions. The composition of NiOMgO solid solutions in equilibrium with NiAl2O4MgAl2O4 solid solutions has been calculated from the results and information available in literature.
Resumo:
The solubility of oxygen in liquid indium in the temperature range 650–820 °C and in liquid copper-indium alloys at 1100 °C in equilibrium with indium sesquioxide has been measured by a phase equilibration technique. The solubility of oxygen in pure indium is given by the relation log(at.% O) = −4726/T + 3.73 (±0.08) Using the recently measured values for the standard free energy of formation of In2O3 and assuming that oxygen obeys Sievert's law up to saturation, the standard free energy of solution of molecular oxygen in liquid indium is calculated as View the MathML sourceΔG°= −51 440 + 8.07 T (±500) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which activity is equal to atomic per cent. The effect of indium additions on the activity coefficient of oxygen dissolved in liquid copper was measured by a solid oxide galvanic cell. The interaction parameter ϵ0In is given by View the MathML source The experimentally determined variation of the activity coefficient of oxygen in dilute solution in Cu-In alloys is in fair agreement with that predicted by a quasichemical model in which each oxygen atom is assumed to be interstitially coordinated to four metal atoms and the nearest neighbour metal atoms are assumed to lose approximately half their metallic cohesive energies.
Resumo:
The solubility of oxygen in liquid germanium in the temperature range 1233 to 1397 K, and in liquid germanium-copper alloys at 1373 K, in equilibrium with GeO2 has been measured by the phase equilibration technique. The solubility of oxygen in pure germanium is given by the relation R470 log(at. pct 0)=-6470/T+4.24 (±0.07). The standard free energy of solution of oxygen in liquid germanium is calculated from the saturation solubility, and recently measured values for the free energy of formation of GeO2, assuming that oxygen obeys Sievert’s law up to the saturation limit. For the reaction, 1/2 O2(g)→ OGe ΔG° =-39,000 + 3.21T (±500) cal = -163,200 + 13.43T (±2100) J. where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct), in the limit, as concentration approaches zero. The effect of copper on the activity of oxygen dissolved in liquid germanium is found to be in good agreement with that predicted by a quasichemical model in which each oxygen was assumed to be bonded to four metal atoms and the nearest neighbor metal atoms to an oxygen atom are assumed to lose approximately half of their metallic bonds.
Resumo:
A review of the structural and thermodynamic information and phase equilibria in the Cu-Fe-O system suggested that a consistent, quantitative description of the system is hampered by lack of data on activities in the spinel solid solution CuFe2O4-Fe3O4. Therefore the activity of Fe3O4 in this solid solution is derived from measurements of the oxygen potentials established at 1000°C by mixtures containing Fe2O3 and spinel solid solutions of known composition. The oxygen pressures were measured manometrically for solid solutions rich in CuFe2O4, while for Fe3O4-rich compositions the oxygen potentials were obtained by an emf technique. The activities show significant negative deviations from Raoult’s law. The compositions of the spinel solid solutions in equilibrium with CuO + CuFeO2 and Cu + CuFeO2 were obtained from chemical analysis of the solid solution after magnetic separation. The oxygen potential of the three-phase mixture Cu + CuFeO2 + Fe3O4(spinel s.s.) was determined by a solid oxide galvanic cell. From these measurements a complete phase diagram and consistent thermodynamic data on the ternary condensed phases, CuFeO2 and CuFeO2O4, were obtained. An analysis of the free energy of mixing of the spinel solid solution furnished information on the distribution of cations and their valencies between the tetrahedral and octahedral sites of the spinel lattice, which is consistent with X-ray diffraction, magnetic and Seebeck coefficient measurements.
Resumo:
The vapor pressure of pure indium, and the sum of the pressures of (In) and (In2O) species over the condensed phase mixture {In} + 〈MgIn2O4〉 + 〈MgO〉, have been measured by the Knudsen effusion technique in the temperature range 1095–1350 K. The materials under study were contained in a zirconia crucible, which had a Knudsen orifice along the vertical wall. The major vapor species over the condensed phase mixture were identified as (In) and (In2O) using a mass-spectrometer. The vapor pressure of (In2O) corresponding to the reaction,View the MathML source was deduced from the experimental results;View the MathML source The standard free energy of formation of the inverse spinel 〈MgIn2O4〉 from its component oxides, is given by,View the MathML source View the MathML source The entropy of transformation of 〈In2O3〉 from the C rare-earth structure to the corundum structure is evaluated from the measured entropy of formation of (MgIn2O4) and a semi-empirical correlation for the entropy of formation of spinel phases from component oxides with rock-salt and corundum structures.