948 resultados para Binary Coding
Resumo:
HD (Huntington's disease) is a late onset heritable neurodegenerative disorder that is characterized by neuronal dysfunction and death, particularly in the cerebral cortex and medium spiny neurons of the striatum. This is followed by progressive chorea, dementia and emotional dysfunction, eventually resulting in death. HD is caused by an expanded CAG repeat in the first exon of the HD gene that results in an abnormally elongated polyQ (polyglutamine) tract in its protein product, Htt (Huntingtin). Wild-type Htt is largely cytoplasmic; however, in HD, proteolytic N-terminal fragments of Htt form insoluble deposits in both the cytoplasm and nucleus, provoking the idea that mutHtt (mutant Htt) causes transcriptional dysfunction. While a number of specific transcription factors and co-factors have been proposed as mediators of mutHtt toxicity, the causal relationship between these Htt/transcription factor interactions and HD pathology remains unknown. Previous work has highlighted REST [RE1 (repressor element 1)-silencing transcription factor] as one such transcription factor. REST is a master regulator of neuronal genes, repressing their expression. Many of its direct target genes are known or suspected to have a role in HD pathogenesis, including BDNF (brain-derived neurotrophic factor). Recent evidence has also shown that REST regulates transcription of regulatory miRNAs (microRNAs), many of which are known to regulate neuronal gene expression and are dysregulated in HD. Thus repression of miRNAs constitutes a second, indirect mechanism by which REST can alter the neuronal transcriptome in HD. We will describe the evidence that disruption to the REST regulon brought about by a loss of interaction between REST and mutHtt may be a key contributory factor in the widespread dysregulation of gene expression in HD.
Resumo:
We present a mathematical model describing the inward solidification of a slab, a circular cylinder and a sphere of binary melt kept below its equilibrium freezing temperature. The thermal and physical properties of the melt and solid are assumed to be identical. An asymptotic method, valid in the limit of large Stefan number is used to decompose the moving boundary problem for a pure substance into a hierarchy of fixed-domain diffusion problems. Approximate, analytical solutions are derived for the inward solidification of a slab and a sphere of a binary melt which are compared with numerical solutions of the unapproximated system. The solutions are found to agree within the appropriate asymptotic regime of large Stefan number and small time. Numerical solutions are used to demonstrate the dependence of the solidification process upon the level of impurity and other parameters. We conclude with a discussion of the solutions obtained, their stability and possible extensions and refinements of our study.
Resumo:
As the calibration and evaluation of flood inundation models are a prerequisite for their successful application, there is a clear need to ensure that the performance measures that quantify how well models match the available observations are fit for purpose. This paper evaluates the binary pattern performance measures that are frequently used to compare flood inundation models with observations of flood extent. This evaluation considers whether these measures are able to calibrate and evaluate model predictions in a credible and consistent way, i.e. identifying the underlying model behaviour for a number of different purposes such as comparing models of floods of different magnitudes or on different catchments. Through theoretical examples, it is shown that the binary pattern measures are not consistent for floods of different sizes, such that for the same vertical error in water level, a model of a flood of large magnitude appears to perform better than a model of a smaller magnitude flood. Further, the commonly used Critical Success Index (usually referred to as F<2 >) is biased in favour of overprediction of the flood extent, and is also biased towards correctly predicting areas of the domain with smaller topographic gradients. Consequently, it is recommended that future studies consider carefully the implications of reporting conclusions using these performance measures. Additionally, future research should consider whether a more robust and consistent analysis could be achieved by using elevation comparison methods instead.
Resumo:
The incidence and severity of light leaf spot epidemics caused by the ascomycete fungus Pyrenopeziza brassicae on UK oilseed rape crops is increasing. The disease is currently controlled by a combination of host resistance, cultural practices and fungicide applications. We report decreases in sensitivities of modern UK P. brassicae isolates to the azole (imidazole and triazole) class of fungicides. By cloning and sequencing the P. brassicae CYP51 (PbCYP51) gene, encoding the azole target sterol 14α-demethylase, we identified two non-synonymous mutations encoding substitutions G460S and S508T associated with reduced azole sensitivity. We confirmed the impact of the encoded PbCYP51 changes on azole sensitivity and protein activity by heterologous expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a controllable promoter of native CYP51 expression. In addition, we identified insertions in the predicted regulatory regions of PbCYP51 in isolates with reduced azole sensitivity. The presence of these insertions was associated with enhanced transcription of PbCYP51 in response to sub-inhibitory concentrations of the azole fungicide tebuconazole. Genetic analysis of in vitro crosses of sensitive and resistant isolates confirmed the impact of PbCYP51 alterations in coding and regulatory sequences on a reduced sensitivity phenotype, as well as identifying a second major gene at another locus contributing to resistance in some isolates. The least sensitive field isolates carry combinations of upstream insertions and non-synonymous mutations, suggesting PbCYP51 evolution is on-going and the progressive decline in azole sensitivity of UK P. brassicae populations will continue. The implications for the future control of light leaf spot are discussed.
Resumo:
Low-power medium access control (MAC) protocols used for communication of energy constraint wireless embedded devices do not cope well with situations where transmission channels are highly erroneous. Existing MAC protocols discard corrupted messages which lead to costly retransmissions. To improve transmission performance, it is possible to include an error correction scheme and transmit/receive diversity. It is possible to add redundant information to transmitted packets in order to recover data from corrupted packets. It is also possible to make use of transmit/receive diversity via multiple antennas to improve error resiliency of transmissions. Both schemes may be used in conjunction to further improve the performance. In this study, the authors show how an error correction scheme and transmit/receive diversity can be integrated in low-power MAC protocols. Furthermore, the authors investigate the achievable performance gains of both methods. This is important as both methods have associated costs (processing requirements; additional antennas and power) and for a given communication situation it must be decided which methods should be employed. The authors’ results show that, in many practical situations, error control coding outperforms transmission diversity; however, if very high reliability is required, it is useful to employ both schemes together.
Resumo:
Traditional dictionary learning algorithms are used for finding a sparse representation on high dimensional data by transforming samples into a one-dimensional (1D) vector. This 1D model loses the inherent spatial structure property of data. An alternative solution is to employ Tensor Decomposition for dictionary learning on their original structural form —a tensor— by learning multiple dictionaries along each mode and the corresponding sparse representation in respect to the Kronecker product of these dictionaries. To learn tensor dictionaries along each mode, all the existing methods update each dictionary iteratively in an alternating manner. Because atoms from each mode dictionary jointly make contributions to the sparsity of tensor, existing works ignore atoms correlations between different mode dictionaries by treating each mode dictionary independently. In this paper, we propose a joint multiple dictionary learning method for tensor sparse coding, which explores atom correlations for sparse representation and updates multiple atoms from each mode dictionary simultaneously. In this algorithm, the Frequent-Pattern Tree (FP-tree) mining algorithm is employed to exploit frequent atom patterns in the sparse representation. Inspired by the idea of K-SVD, we develop a new dictionary update method that jointly updates elements in each pattern. Experimental results demonstrate our method outperforms other tensor based dictionary learning algorithms.
Resumo:
This paper presents an approximate closed form sample size formula for determining non-inferiority in active-control trials with binary data. We use the odds-ratio as the measure of the relative treatment effect, derive the sample size formula based on the score test and compare it with a second, well-known formula based on the Wald test. Both closed form formulae are compared with simulations based on the likelihood ratio test. Within the range of parameter values investigated, the score test closed form formula is reasonably accurate when non-inferiority margins are based on odds-ratios of about 0.5 or above and when the magnitude of the odds ratio under the alternative hypothesis lies between about 1 and 2.5. The accuracy generally decreases as the odds ratio under the alternative hypothesis moves upwards from 1. As the non-inferiority margin odds ratio decreases from 0.5, the score test closed form formula increasingly overestimates the sample size irrespective of the magnitude of the odds ratio under the alternative hypothesis. The Wald test closed form formula is also reasonably accurate in the cases where the score test closed form formula works well. Outside these scenarios, the Wald test closed form formula can either underestimate or overestimate the sample size, depending on the magnitude of the non-inferiority margin odds ratio and the odds ratio under the alternative hypothesis. Although neither approximation is accurate for all cases, both approaches lead to satisfactory sample size calculation for non-inferiority trials with binary data where the odds ratio is the parameter of interest.
Resumo:
Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data, and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established state-of-the-art methods.
Resumo:
It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees +/- 4 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about 5 degrees and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.
Resumo:
Many of the controversies around the concept of homology rest on the subjectivity inherent to primary homology propositions. Dynamic homology partially solves this problem, but there has been up to now scant application of it outside of the molecular domain. This is probably because morphological and behavioural characters are rich in properties, connections and qualities, so that there is less space for conflicting character delimitations. Here we present a new method for the direct optimization of behavioural data, a method that relies on the richness of this database to delimit the characters, and on dynamic procedures to establish character state identity. We use between-species congruence in the data matrix and topological stability to choose the best cladogram. We test the methodology using sequences of predatory behaviour in a group of spiders that evolved the highly modified predatory technique of spitting glue onto prey. The cladogram recovered is fully compatible with previous analyses in the literature, and thus the method seems consistent. Besides the advantage of enhanced objectivity in character proposition, the new procedure allows the use of complex, context-dependent behavioural characters in an evolutionary framework, an important step towards the practical integration of the evolutionary and ecological perspectives on diversity. (C) The Willi Hennig Society 2010.
Resumo:
The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1-/- mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Various popular machine learning techniques, like support vector machines, are originally conceived for the solution of two-class (binary) classification problems. However, a large number of real problems present more than two classes. A common approach to generalize binary learning techniques to solve problems with more than two classes, also known as multiclass classification problems, consists of hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs are combined to define the predicted class. This strategy results in a tree of binary classifiers, where each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf nodes correspond to the problem classes. This paper investigates how measures of the separability between classes can be employed in the construction of binary-tree-based multiclass classifiers, adapting the decompositions performed to each particular multiclass problem. (C) 2010 Elsevier B.V. All rights reserved.